A combinatorial approach to the elastic response of electrospun mats Architectural framework and single fiber properties /

Electrospun is a unique class of porous and heterogeneous materials with multi-length-scales constituents that offer a rich variety of surface functionalities to serve a host of applications. Upscaling the electrospun materials from the laboratory to the industry is often limited by the lack of unde...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Singh Danvendra
Sibal Apurv
Sharma Deepika
Sharma Sumit
Sebők Dániel
Satapathy Bhabani K.
Goswami Parikshit
Kukovecz Ákos
Rawal Amit
Dokumentumtípus: Cikk
Megjelent: 2023
Sorozat:MECHANICS OF MATERIALS 176
Tárgyszavak:
doi:10.1016/j.mechmat.2022.104484

mtmt:33957686
Online Access:http://publicatio.bibl.u-szeged.hu/27796
LEADER 02576nab a2200313 i 4500
001 publ27796
005 20230704095032.0
008 230704s2023 hu o 0|| Angol d
022 |a 0167-6636 
024 7 |a 10.1016/j.mechmat.2022.104484  |2 doi 
024 7 |a 33957686  |2 mtmt 
040 |a SZTE Publicatio Repozitórium  |b hun 
041 |a Angol 
100 1 |a Singh Danvendra 
245 1 2 |a A combinatorial approach to the elastic response of electrospun mats  |h [elektronikus dokumentum] :  |b Architectural framework and single fiber properties /  |c  Singh Danvendra 
260 |c 2023 
300 |a 14 
490 0 |a MECHANICS OF MATERIALS  |v 176 
520 3 |a Electrospun is a unique class of porous and heterogeneous materials with multi-length-scales constituents that offer a rich variety of surface functionalities to serve a host of applications. Upscaling the electrospun materials from the laboratory to the industry is often limited by the lack of understanding of their mechanical properties. Herein, we developed a theoretical framework to predict the elastic constants of the electrospun mats that hinges on the concept of elastic properties of constituent fibers, three-dimensional (3D) alignment of fibers, and local fiber curvature. Enabled by continuum-based micromechanical approaches, this framework successfully pre-dicted the elastic moduli regardless of bead-string morphology and local architectural heterogeneities present within the electrospun mats. The 3D fiber orientation distribution obtained using X-ray nano-computed tomography (nanoCT) analysis served as a key input for the validation of the analytical model. In general, the predicted elastic moduli are in reasonably good agreement with the experimental data of randomly oriented and preferentially aligned polylactic acid (PLA)-based electrospun mats. To demonstrate our analytical model's versatility and reliability, another set of PA6(3)-based electrospun mats has been chosen from the literature for validation purposes. The parametric analysis has been performed to provide a roadmap to improve the elastic moduli of electrospun mats and justify the assumed values of some of the key attributes. 
650 4 |a Kémiai tudományok 
700 0 1 |a Sibal Apurv  |e aut 
700 0 1 |a Sharma Deepika  |e aut 
700 0 1 |a Sharma Sumit  |e aut 
700 0 1 |a Sebők Dániel  |e aut 
700 0 1 |a Satapathy Bhabani K.  |e aut 
700 0 1 |a Goswami Parikshit  |e aut 
700 0 1 |a Kukovecz Ákos  |e aut 
700 0 1 |a Rawal Amit  |e aut 
856 4 0 |u http://publicatio.bibl.u-szeged.hu/27796/2/33957686.pdf  |z Dokumentum-elérés