Stability and Threshold Dynamics in a Seasonal Mathematical Model for Measles Outbreaks with Double-Dose Vaccination
Measles is a highly contagious viral disease that can lead to serious complications, including death, particularly in young children. In this study, we developed a mathematical model that incorporates a seasonal transmission parameter to examine the measles transmission dynamics. We define the basic...
Elmentve itt :
Szerzők: |
Ibrahim Mahmoud Abdalla Ali Dénes Attila |
---|---|
Dokumentumtípus: | Cikk |
Megjelent: |
2023
|
Sorozat: | MATHEMATICS
11 No. 8 |
Tárgyszavak: | |
doi: | 10.3390/math11081791 |
mtmt: | 33744653 |
Online Access: | http://publicatio.bibl.u-szeged.hu/26959 |
Hasonló tételek
-
Threshold dynamics in mathematical models for mosquito- and rodent-borne diseases with seasonality
Szerző: Ibrahim Mahmoud Abdalla Ali
Megjelent: (2022) -
Threshold Dynamics in a Model for Zika Virus Disease with Seasonality
Szerző: Ibrahim Mahmoud Abdalla Ali, et al.
Megjelent: (2021) -
Analysis and dynamics of measles with control strategies a mathematical modeling approach /
Szerző: Peter Olumuyiwa James, et al.
Megjelent: (2023) -
A mathematical model for Lassa fever transmission dynamics in a seasonal environment with a view to the 2017–20 epidemic in Nigeria
Szerző: Ibrahim Mahmoud Abdalla Ali, et al.
Megjelent: (2021) -
Threshold and stability results in a periodic model for malaria transmission with partial immunity in humans
Szerző: Ibrahim Mahmoud Abdalla Ali, et al.
Megjelent: (2021)