Adaptive Savitzky–Golay Filters for Analysis of Copy Number Variation Peaks from Whole-Exome Sequencing Data

Copy number variation (CNV) is a form of structural variation in the human genome that provides medical insight into complex human diseases; while whole-genome sequencing is becoming more affordable, whole-exome sequencing (WES) remains an important tool in clinical diagnostics. Because of its disco...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Ochieng Peter Juma
Maróti Zoltán
Dombi József
Krész Miklós
Békési József
Kalmár Tibor
Dokumentumtípus: Cikk
Megjelent: 2023
Sorozat:INFORMATION (BASEL) 14 No. 2
Tárgyszavak:
doi:10.3390/info14020128

mtmt:33643183
Online Access:http://publicatio.bibl.u-szeged.hu/26850
LEADER 02918nab a2200289 i 4500
001 publ26850
005 20230328101039.0
008 230328s2023 hu o 0|| Angol d
022 |a 2078-2489 
024 7 |a 10.3390/info14020128  |2 doi 
024 7 |a 33643183  |2 mtmt 
040 |a SZTE Publicatio Repozitórium  |b hun 
041 |a Angol 
100 1 |a Ochieng Peter Juma 
245 1 0 |a Adaptive Savitzky–Golay Filters for Analysis of Copy Number Variation Peaks from Whole-Exome Sequencing Data  |h [elektronikus dokumentum] /  |c  Ochieng Peter Juma 
260 |c 2023 
300 |a 21 
490 0 |a INFORMATION (BASEL)  |v 14 No. 2 
520 3 |a Copy number variation (CNV) is a form of structural variation in the human genome that provides medical insight into complex human diseases; while whole-genome sequencing is becoming more affordable, whole-exome sequencing (WES) remains an important tool in clinical diagnostics. Because of its discontinuous nature and unique characteristics of sparse target-enrichment-based WES data, the analysis and detection of CNV peaks remain difficult tasks. The Savitzky–Golay (SG) smoothing is well known as a fast and efficient smoothing method. However, no study has documented the use of this technique for CNV peak detection. It is well known that the effectiveness of the classical SG filter depends on the proper selection of the window length and polynomial degree, which should correspond with the scale of the peak because, in the case of peaks with a high rate of change, the effectiveness of the filter could be restricted. Based on the Savitzky–Golay algorithm, this paper introduces a novel adaptive method to smooth irregular peak distributions. The proposed method ensures high-precision noise reduction by dynamically modifying the results of the prior smoothing to automatically adjust parameters. Our method offers an additional feature extraction technique based on density and Euclidean distance. In comparison to classical Savitzky–Golay filtering and other peer filtering methods, the performance evaluation demonstrates that adaptive Savitzky–Golay filtering performs better. According to experimental results, our method effectively detects CNV peaks across all genomic segments for both short and long tags, with minimal peak height fidelity values (i.e., low estimation bias). As a result, we clearly demonstrate how well the adaptive Savitzky–Golay filtering method works and how its use in the detection of CNV peaks can complement the existing techniques used in CNV peak analysis. 
650 4 |a Számítás- és információtudomány 
650 4 |a Általános orvostudomány 
700 0 1 |a Maróti Zoltán  |e aut 
700 0 1 |a Dombi József  |e aut 
700 0 1 |a Krész Miklós  |e aut 
700 0 1 |a Békési József  |e aut 
700 0 1 |a Kalmár Tibor  |e aut 
856 4 0 |u http://publicatio.bibl.u-szeged.hu/26850/1/information-14-00128.pdf  |z Dokumentum-elérés