Prediction of early-stage melanoma recurrence using clinical and histopathologic features

Prognostic analysis for early-stage (stage I/II) melanomas is of paramount importance for customized surveillance and treatment plans. Since immune checkpoint inhibitors have recently been approved for stage IIB and IIC melanomas, prognostic tools to identify patients at high risk of recurrence have...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Wan Guihong
Nguyen Nga
Liu Feng
DeSimone Mia S.
Leung Bonnie W.
Rajeh Ahmad
Collier Michael R.
Choi Min Seok
Amadife Munachimso
Tang Kimberly
Zhang Shijia
Phillipps Jordan S.
Jairath Ruple
Németh István Balázs
Markó-Varga György
Dokumentumtípus: Cikk
Megjelent: 2022
Sorozat:NPJ PRECISION ONCOLOGY 6 No. 1
Tárgyszavak:
doi:10.1038/s41698-022-00321-4

mtmt:33548079
Online Access:http://publicatio.bibl.u-szeged.hu/26531
LEADER 02795nab a2200385 i 4500
001 publ26531
005 20230220085507.0
008 230220s2022 hu o 0|| Angol d
022 |a 2397-768X 
024 7 |a 10.1038/s41698-022-00321-4  |2 doi 
024 7 |a 33548079  |2 mtmt 
040 |a SZTE Publicatio Repozitórium  |b hun 
041 |a Angol 
100 1 |a Wan Guihong 
245 1 0 |a Prediction of early-stage melanoma recurrence using clinical and histopathologic features  |h [elektronikus dokumentum] /  |c  Wan Guihong 
260 |c 2022 
300 |a 16 
490 0 |a NPJ PRECISION ONCOLOGY  |v 6 No. 1 
520 3 |a Prognostic analysis for early-stage (stage I/II) melanomas is of paramount importance for customized surveillance and treatment plans. Since immune checkpoint inhibitors have recently been approved for stage IIB and IIC melanomas, prognostic tools to identify patients at high risk of recurrence have become even more critical. This study aims to assess the effectiveness of machine-learning algorithms in predicting melanoma recurrence using clinical and histopathologic features from Electronic Health Records (EHRs). We collected 1720 early-stage melanomas: 1172 from the Mass General Brigham healthcare system (MGB) and 548 from the Dana-Farber Cancer Institute (DFCI). We extracted 36 clinicopathologic features and used them to predict the recurrence risk with supervised machine-learning algorithms. Models were evaluated internally and externally: (1) five-fold cross-validation of the MGB cohort; (2) the MGB cohort for training and the DFCI cohort for testing independently. In the internal and external validations, respectively, we achieved a recurrence classification performance of AUC: 0.845 and 0.812, and a time-to-event prediction performance of time-dependent AUC: 0.853 and 0.820. Breslow tumor thickness and mitotic rate were identified as the most predictive features. Our results suggest that machine-learning algorithms can extract predictive signals from clinicopathologic features for early-stage melanoma recurrence prediction, which will enable the identification of patients that may benefit from adjuvant immunotherapy. 
650 4 |a Klinikai orvostan 
700 0 1 |a Nguyen Nga  |e aut 
700 0 1 |a Liu Feng  |e aut 
700 0 1 |a DeSimone Mia S.  |e aut 
700 0 1 |a Leung Bonnie W.  |e aut 
700 0 1 |a Rajeh Ahmad  |e aut 
700 0 1 |a Collier Michael R.  |e aut 
700 0 1 |a Choi Min Seok  |e aut 
700 0 1 |a Amadife Munachimso  |e aut 
700 0 1 |a Tang Kimberly  |e aut 
700 0 1 |a Zhang Shijia  |e aut 
700 0 1 |a Phillipps Jordan S.  |e aut 
700 0 1 |a Jairath Ruple  |e aut 
700 0 1 |a Németh István Balázs  |e aut 
700 0 2 |a Markó-Varga György  |e aut 
856 4 0 |u http://publicatio.bibl.u-szeged.hu/26531/1/s41698-022-00321-4.pdf  |z Dokumentum-elérés