A Possible Explanation for the Low Penetrance of Pathogenic KCNE1 Variants in Long QT Syndrome Type 5

Long QT syndrome (LQTS) is an inherited cardiac rhythm disorder associated with increased incidence of cardiac arrhythmias and sudden death. LQTS type 5 (LQT5) is caused by dominant mutant variants of KCNE1, a regulatory subunit of the voltage-gated ion channels generating the cardiac potassium curr...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Déri Szilvia
Hartai Teodóra
Virág László
Jost Norbert László
Labro Alain J.
Varró András
Baczkó István
Nattel Stanley
Ördög Balázs
Dokumentumtípus: Cikk
Megjelent: 2022
Sorozat:PHARMACEUTICALS 15 No. 12
Tárgyszavak:
doi:10.3390/ph15121550

mtmt:33364822
Online Access:http://publicatio.bibl.u-szeged.hu/25844
LEADER 02248nab a2200313 i 4500
001 publ25844
005 20221219145349.0
008 221219s2022 hu o 0|| Angol d
022 |a 1424-8247 
024 7 |a 10.3390/ph15121550  |2 doi 
024 7 |a 33364822  |2 mtmt 
040 |a SZTE Publicatio Repozitórium  |b hun 
041 |a Angol 
100 1 |a Déri Szilvia 
245 1 2 |a A Possible Explanation for the Low Penetrance of Pathogenic KCNE1 Variants in Long QT Syndrome Type 5  |h [elektronikus dokumentum] /  |c  Déri Szilvia 
260 |c 2022 
300 |a 15 
490 0 |a PHARMACEUTICALS  |v 15 No. 12 
520 3 |a Long QT syndrome (LQTS) is an inherited cardiac rhythm disorder associated with increased incidence of cardiac arrhythmias and sudden death. LQTS type 5 (LQT5) is caused by dominant mutant variants of KCNE1, a regulatory subunit of the voltage-gated ion channels generating the cardiac potassium current IKs. While mutant LQT5 KCNE1 variants are known to inhibit IKs amplitudes in heterologous expression systems, cardiomyocytes from a transgenic rabbit LQT5 model displayed unchanged IKs amplitudes, pointing towards the critical role of additional factors in the development of the LQT5 phenotype in vivo. In this study, we demonstrate that KCNE3, a candidate regulatory subunit of IKs channels minimizes the inhibitory effects of LQT5 KCNE1 variants on IKs amplitudes, while current deactivation is accelerated. Such changes recapitulate IKs properties observed in LQT5 transgenic rabbits. We show that KCNE3 accomplishes this by displacing the KCNE1 subunit within the IKs ion channel complex, as evidenced by a dedicated biophysical assay. These findings depict KCNE3 as an integral part of the IKs channel complex that regulates IKs function in cardiomyocytes and modifies the development of the LQT5 phenotype. 
650 4 |a Általános orvostudomány 
700 0 1 |a Hartai Teodóra  |e aut 
700 0 1 |a Virág László  |e aut 
700 0 1 |a Jost Norbert László  |e aut 
700 0 1 |a Labro Alain J.  |e aut 
700 0 1 |a Varró András  |e aut 
700 0 1 |a Baczkó István  |e aut 
700 0 1 |a Nattel Stanley  |e aut 
700 0 1 |a Ördög Balázs  |e aut 
856 4 0 |u http://publicatio.bibl.u-szeged.hu/25844/1/Deri2022.pdf  |z Dokumentum-elérés