Proteome-wide landscape of solubility limits in a bacterial cell

Proteins are prone to aggregate when expressed above their solubility limits. Aggregation may occur rapidly, potentially as early as proteins emerge from the ribosome, or slowly, following synthesis. However, in vivo data on aggregation rates are scarce. Here, we classified the Escherichia coli prot...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Györkei Ádám
Daruka Lejla
Balogh Dávid
Őszi Erika
Magyar Zoltán
Szappanos Balázs
Fekete Gergely
Fuxreiter Mónika
Horváth Péter
Pál Csaba
Kintses Bálint
Papp Balázs
Dokumentumtípus: Cikk
Megjelent: 2022
Sorozat:SCIENTIFIC REPORTS 12 No. 1
Tárgyszavak:
doi:10.1038/s41598-022-10427-1

mtmt:32813213
Online Access:http://publicatio.bibl.u-szeged.hu/25266
LEADER 02388nab a2200349 i 4500
001 publ25266
005 20221003174424.0
008 221003s2022 hu o 0|| Angol d
022 |a 2045-2322 
024 7 |a 10.1038/s41598-022-10427-1  |2 doi 
024 7 |a 32813213  |2 mtmt 
040 |a SZTE Publicatio Repozitórium  |b hun 
041 |a Angol 
100 1 |a Györkei Ádám 
245 1 0 |a Proteome-wide landscape of solubility limits in a bacterial cell  |h [elektronikus dokumentum] /  |c  Györkei Ádám 
260 |c 2022 
300 |a 13 
490 0 |a SCIENTIFIC REPORTS  |v 12 No. 1 
520 3 |a Proteins are prone to aggregate when expressed above their solubility limits. Aggregation may occur rapidly, potentially as early as proteins emerge from the ribosome, or slowly, following synthesis. However, in vivo data on aggregation rates are scarce. Here, we classified the Escherichia coli proteome into rapidly and slowly aggregating proteins using an in vivo image-based screen coupled with machine learning. We find that the majority (70%) of cytosolic proteins that become insoluble upon overexpression have relatively low rates of aggregation and are unlikely to aggregate co-translationally. Remarkably, such proteins exhibit higher folding rates compared to rapidly aggregating proteins, potentially implying that they aggregate after reaching their folded states. Furthermore, we find that a substantial fraction (similar to 35%) of the proteome remain soluble at concentrations much higher than those found naturally, indicating a large margin of safety to tolerate gene expression changes. We show that high disorder content and low surface stickiness are major determinants of high solubility and are favored in abundant bacterial proteins. Overall, our study provides a global view of aggregation rates and hence solubility limits of proteins in a bacterial cell. 
650 4 |a Biológiai tudományok 
700 0 1 |a Daruka Lejla  |e aut 
700 0 1 |a Balogh Dávid  |e aut 
700 0 1 |a Őszi Erika  |e aut 
700 0 1 |a Magyar Zoltán  |e aut 
700 0 1 |a Szappanos Balázs  |e aut 
700 0 1 |a Fekete Gergely  |e aut 
700 0 1 |a Fuxreiter Mónika  |e aut 
700 0 1 |a Horváth Péter  |e aut 
700 0 1 |a Pál Csaba  |e aut 
700 0 1 |a Kintses Bálint  |e aut 
700 0 1 |a Papp Balázs  |e aut 
856 4 0 |u http://publicatio.bibl.u-szeged.hu/25266/1/s41598-022-10427-1.pdf  |z Dokumentum-elérés