IoT Malware Detection with Machine Learning
Embedded devices are increasingly connected to the Internet to provide new and innovative applications in many domains. However, these IoT devices can also contain security vulnerabilities, which allow attackers to compromise them using malware. We report on our recent work on using machine learning...
Elmentve itt :
Szerzők: | |
---|---|
Dokumentumtípus: | Cikk |
Megjelent: |
2022
|
Sorozat: | ERCIM NEWS
|
Tárgyszavak: | |
mtmt: | 32820855 |
Online Access: | http://publicatio.bibl.u-szeged.hu/25019 |
LEADER | 01171nab a2200229 i 4500 | ||
---|---|---|---|
001 | publ25019 | ||
005 | 20220908083252.0 | ||
008 | 220908s2022 hu o 0|| Angol d | ||
022 | |a 0926-4981 | ||
024 | 7 | |a 32820855 |2 mtmt | |
040 | |a SZTE Publicatio Repozitórium |b hun | ||
041 | |a Angol | ||
100 | 1 | |a Buttyán Levente | |
245 | 1 | 0 | |a IoT Malware Detection with Machine Learning |h [elektronikus dokumentum] / |c Buttyán Levente |
260 | |c 2022 | ||
300 | |a 17-19 | ||
490 | 0 | |a ERCIM NEWS | |
520 | 3 | |a Embedded devices are increasingly connected to the Internet to provide new and innovative applications in many domains. However, these IoT devices can also contain security vulnerabilities, which allow attackers to compromise them using malware. We report on our recent work on using machine learning for efficient and effective malware detection on resource-constrained IoT devices. | |
650 | 4 | |a Számítás- és információtudomány | |
700 | 0 | 1 | |a Ferenc Rudolf |e aut |
856 | 4 | 0 | |u http://publicatio.bibl.u-szeged.hu/25019/3/32820855_publikacio.pdf |z Dokumentum-elérés |
856 | 4 | 0 | |u http://publicatio.bibl.u-szeged.hu/25019/1/10-buttyan-edited.pdf |z Dokumentum-elérés |