EASY-APP An artificial intelligence model and application for early and easy prediction of severity in acute pancreatitis /

Acute pancreatitis (AP) is a potentially severe or even fatal inflammation of the pancreas. Early identification of patients at high risk for developing a severe course of the disease is crucial for preventing organ failure and death. Most of the former predictive scores require many parameters or a...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Kui Balázs
Pintér József
Molontay Roland
Nagy Marcell
Borbásné Farkas Kornélia
Gede Noémi
Vincze Áron
Bajor Judit
Gódi Szilárd
Czimmer József
Szabó Imre
Illés Anita
Sarlós Patrícia
Hágendorn Roland
Pár Gabriella
Papp Mária
Vitális Zsuzsanna
Kovács György
Fehér Eszter
Földi Ildikó
Izbéki Ferenc
Gajdán László
Fejes Roland
Németh Balázs
Török Imola
Farkas Hunor
Párniczky Andrea
Erőss Bálint Mihály
Hegyi Péter Jenő
Márta Katalin
Váncsa Szilárd
Szatmáry Péter
Szentesi Andrea Ildikó
Hegyi Péter
Kollaborációs szervezet: the Hungarian Pancreatic Study Group
Dokumentumtípus: Cikk
Megjelent: 2022
Sorozat:CLINICAL AND TRANSLATIONAL MEDICINE 12 No. 6
Tárgyszavak:
doi:10.1002/ctm2.842

mtmt:32865751
Online Access:http://publicatio.bibl.u-szeged.hu/24722
LEADER 04092nab a2200625 i 4500
001 publ24722
005 20220719081903.0
008 220719s2022 hu o 0|| Angol d
022 |a 2001-1326 
024 7 |a 10.1002/ctm2.842  |2 doi 
024 7 |a 32865751  |2 mtmt 
040 |a SZTE Publicatio Repozitórium  |b hun 
041 |a Angol 
100 1 |a Kui Balázs 
245 1 0 |a EASY-APP   |h [elektronikus dokumentum] :  |b An artificial intelligence model and application for early and easy prediction of severity in acute pancreatitis /  |c  Kui Balázs 
260 |c 2022 
300 |a Terjedelem: 13 p.-Azonosító: e842 
490 0 |a CLINICAL AND TRANSLATIONAL MEDICINE  |v 12 No. 6 
520 3 |a Acute pancreatitis (AP) is a potentially severe or even fatal inflammation of the pancreas. Early identification of patients at high risk for developing a severe course of the disease is crucial for preventing organ failure and death. Most of the former predictive scores require many parameters or at least 24 h to predict the severity; therefore, the early therapeutic window is often missed.The early achievable severity index (EASY) is a multicentre, multinational, prospective and observational study (ISRCTN10525246). The predictions were made using machine learning models. We used the scikit-learn, xgboost and catboost Python packages for modelling. We evaluated our models using fourfold cross-validation, and the receiver operating characteristic (ROC) curve, the area under the ROC curve (AUC), and accuracy metrics were calculated on the union of the test sets of the cross-validation. The most critical factors and their contribution to the prediction were identified using a modern tool of explainable artificial intelligence called SHapley Additive exPlanations (SHAP).The prediction model was based on an international cohort of 1184 patients and a validation cohort of 3543 patients. The best performing model was an XGBoost classifier with an average AUC score of 0.81 ± 0.033 and an accuracy of 89.1%, and the model improved with experience. The six most influential features were the respiratory rate, body temperature, abdominal muscular reflex, gender, age and glucose level. Using the XGBoost machine learning algorithm for prediction, the SHAP values for the explanation and the bootstrapping method to estimate confidence, we developed a free and easy-to-use web application in the Streamlit Python-based framework (http://easy-app.org/).The EASY prediction score is a practical tool for identifying patients at high risk for severe AP within hours of hospital admission. The web application is available for clinicians and contributes to the improvement of the model. 
650 4 |a Klinikai orvostan 
700 0 1 |a Pintér József  |e aut 
700 0 1 |a Molontay Roland  |e aut 
700 0 1 |a Nagy Marcell  |e aut 
700 0 2 |a Borbásné Farkas Kornélia  |e aut 
700 0 2 |a Gede Noémi  |e aut 
700 0 2 |a Vincze Áron  |e aut 
700 0 2 |a Bajor Judit  |e aut 
700 0 2 |a Gódi Szilárd  |e aut 
700 0 2 |a Czimmer József  |e aut 
700 0 2 |a Szabó Imre  |e aut 
700 0 2 |a Illés Anita  |e aut 
700 0 2 |a Sarlós Patrícia  |e aut 
700 0 2 |a Hágendorn Roland  |e aut 
700 0 2 |a Pár Gabriella  |e aut 
700 0 2 |a Papp Mária  |e aut 
700 0 2 |a Vitális Zsuzsanna  |e aut 
700 0 2 |a Kovács György  |e aut 
700 0 2 |a Fehér Eszter  |e aut 
700 0 2 |a Földi Ildikó  |e aut 
700 0 2 |a Izbéki Ferenc  |e aut 
700 0 2 |a Gajdán László  |e aut 
700 0 2 |a Fejes Roland  |e aut 
700 0 2 |a Németh Balázs  |e aut 
700 0 2 |a Török Imola  |e aut 
700 0 2 |a Farkas Hunor  |e aut 
700 0 2 |a Párniczky Andrea  |e aut 
700 0 2 |a Erőss Bálint Mihály  |e aut 
700 0 2 |a Hegyi Péter Jenő  |e aut 
700 0 2 |a Márta Katalin  |e aut 
700 0 2 |a Váncsa Szilárd  |e aut 
700 0 2 |a Szatmáry Péter  |e aut 
700 0 2 |a Szentesi Andrea Ildikó  |e aut 
700 0 2 |a Hegyi Péter  |e aut 
700 0 2 |a Kollaborációs szervezet: the Hungarian Pancreatic Study Group  |e aut 
856 4 0 |u http://publicatio.bibl.u-szeged.hu/24722/1/Kui2022.pdf  |z Dokumentum-elérés