Inter-Variability Study of COVLIAS 1.0 Hybrid Deep Learning Models for COVID-19 Lung Segmentation in Computed Tomography /

Background: For COVID-19 lung severity, segmentation of lungs on computed tomography (CT) is the first crucial step. Current deep learning (DL)-based Artificial Intelligence (AI) models have a bias in the training stage of segmentation because only one set of ground truth (GT) annotations are evalua...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Suri Jasjit S.
Agarwal Sushant
Elavarthi Pranav
Pathak Rajesh
Ketireddy Vedmanvitha
Columbu Marta
Saba Luca
Gupta Suneet K.
Faa Gavino
Singh Inder M.
Turk Monika
Chadha Paramjit S.
Johri Amer M.
Nagy Ferenc Tamás
Ruzsa Zoltán
Dokumentumtípus: Cikk
Megjelent: 2021
Sorozat:DIAGNOSTICS 11 No. 11
Tárgyszavak:
doi:10.3390/diagnostics11112025

mtmt:32612340
Online Access:http://publicatio.bibl.u-szeged.hu/23384
LEADER 02967nab a2200385 i 4500
001 publ23384
005 20220201111506.0
008 220201s2021 hu o 0|| Angol d
022 |a 2075-4418 
024 7 |a 10.3390/diagnostics11112025  |2 doi 
024 7 |a 32612340  |2 mtmt 
040 |a SZTE Publicatio Repozitórium  |b hun 
041 |a Angol 
100 1 |a Suri Jasjit S. 
245 1 0 |a Inter-Variability Study of COVLIAS 1.0   |h [elektronikus dokumentum] :  |b Hybrid Deep Learning Models for COVID-19 Lung Segmentation in Computed Tomography /  |c  Suri Jasjit S. 
260 |c 2021 
300 |a Terjedelem: 36 p-Azonosító: 2025 
490 0 |a DIAGNOSTICS  |v 11 No. 11 
520 3 |a Background: For COVID-19 lung severity, segmentation of lungs on computed tomography (CT) is the first crucial step. Current deep learning (DL)-based Artificial Intelligence (AI) models have a bias in the training stage of segmentation because only one set of ground truth (GT) annotations are evaluated. We propose a robust and stable inter-variability analysis of CT lung segmentation in COVID-19 to avoid the effect of bias. Methodology: The proposed inter-variability study consists of two GT tracers for lung segmentation on chest CT. Three AI models, PSP Net, VGG-SegNet, and ResNet-SegNet, were trained using GT annotations. We hypothesized that if AI models are trained on the GT tracings from multiple experience levels, and if the AI performance on the test data between these AI models is within the 5% range, one can consider such an AI model robust and unbiased. The K5 protocol (training to testing: 80%:20%) was adapted. Ten kinds of metrics were used for performance evaluation. Results: The database consisted of 5000 CT chest images from 72 COVID-19-infected patients. By computing the coefficient of correlations (CC) between the output of the two AI models trained corresponding to the two GT tracers, computing their differences in their CC, and repeating the process for all three AI-models, we show the differences as 0%, 0.51%, and 2.04% (all < 5%), thereby validating the hypothesis. The performance was comparable; however, it had the following order: ResNet-SegNet > PSP Net > VGG-SegNet. Conclusions: The AI models were clinically robust and stable during the inter-variability analysis on the CT lung segmentation on COVID-19 patients. 
650 4 |a Klinikai orvostan 
700 0 1 |a Agarwal Sushant  |e aut 
700 0 1 |a Elavarthi Pranav  |e aut 
700 0 1 |a Pathak Rajesh  |e aut 
700 0 1 |a Ketireddy Vedmanvitha  |e aut 
700 0 1 |a Columbu Marta  |e aut 
700 0 1 |a Saba Luca  |e aut 
700 0 1 |a Gupta Suneet K.  |e aut 
700 0 1 |a Faa Gavino  |e aut 
700 0 1 |a Singh Inder M.  |e aut 
700 0 1 |a Turk Monika  |e aut 
700 0 1 |a Chadha Paramjit S.  |e aut 
700 0 1 |a Johri Amer M.  |e aut 
700 0 1 |a Nagy Ferenc Tamás  |e aut 
700 0 1 |a Ruzsa Zoltán  |e aut 
856 4 0 |u http://publicatio.bibl.u-szeged.hu/23384/1/SuriDiagnostics2021.pdf  |z Dokumentum-elérés