Cardiovascular disease detection using machine learning and carotid/femoral arterial imaging frameworks in rheumatoid arthritis patients
The study proposes a novel machine learning (ML) paradigm for cardiovascular disease (CVD) detection in individuals at medium to high cardiovascular risk using data from a Greek cohort of 542 individuals with rheumatoid arthritis, or diabetes mellitus, and/or arterial hypertension, using conventiona...
Elmentve itt :
Szerzők: |
Konstantonis George Singh Krishna V. Sfikakis Petros P. Jamthikar Ankush D. Kitas George D. Gupta Suneet K. Saba Luca Verrou Kleio Khanna Narendra N. Ruzsa Zoltán Sharma Aditya M. Laird John R. Johri Amer M. Kalra Manudeep Protogerou Athanasios Suri Jasjit S. |
---|---|
Dokumentumtípus: | Cikk |
Megjelent: |
2022
|
Sorozat: | RHEUMATOLOGY INTERNATIONAL
42 |
Tárgyszavak: | |
doi: | 10.1007/s00296-021-05062-4 |
mtmt: | 32611833 |
Online Access: | http://publicatio.bibl.u-szeged.hu/23380 |
Hasonló tételek
-
A Powerful Paradigm for Cardiovascular Risk Stratification Using Multiclass, Multi-Label, and Ensemble-Based Machine Learning Paradigms A Narrative Review /
Szerző: Suri Jasjit S., et al.
Megjelent: (2022) -
Understanding the bias in machine learning systems for cardiovascular disease risk assessment
Szerző: Suri Jasjit S., et al.
Megjelent: (2022) -
Features of atypical femoral fractures in a clinical setting
Szerző: Dózsai Dávid
Megjelent: (2023) -
Ultrasound guidance for femoral venous access in electrophysiology procedures systematic review and meta-analysis /
Szerző: Kupó Péter, et al.
Megjelent: (2020) -
Bisphosphonate therapy associated with bilateral atypical femoral fracture and delayed union
Szerző: Gárgyán István, et al.
Megjelent: (2022)