Representing a monotone map by principal lattice congruences
For a lattice L, let Princ (L) denote the ordered set of principal congruences of L. In a pioneering paper, G. Grätzer proved that bounded ordered sets (in other words, posets with 0 and 1) are, up to isomorphism, exactly the Princ (L) of bounded lattices L. Here we prove that for each 0-separating...
Elmentve itt :
Szerző: | |
---|---|
Dokumentumtípus: | Cikk |
Megjelent: |
2015
|
Sorozat: | ACTA MATHEMATICA HUNGARICA
147 No. 1 |
doi: | 10.1007/s10474-015-0539-0 |
mtmt: | 2984003 |
Online Access: | http://publicatio.bibl.u-szeged.hu/14547 |
LEADER | 01451nab a2200217 i 4500 | ||
---|---|---|---|
001 | publ14547 | ||
005 | 20221129084500.0 | ||
008 | 190128s2015 hu o 0|| zxx d | ||
022 | |a 0236-5294 | ||
024 | 7 | |a 10.1007/s10474-015-0539-0 |2 doi | |
024 | 7 | |a 2984003 |2 mtmt | |
040 | |a SZTE Publicatio Repozitórium |b hun | ||
041 | |a zxx | ||
100 | 1 | |a Czédli Gábor | |
245 | 1 | 0 | |a Representing a monotone map by principal lattice congruences |h [elektronikus dokumentum] / |c Czédli Gábor |
260 | |c 2015 | ||
300 | |a 12-18 | ||
490 | 0 | |a ACTA MATHEMATICA HUNGARICA |v 147 No. 1 | |
520 | 3 | |a For a lattice L, let Princ (L) denote the ordered set of principal congruences of L. In a pioneering paper, G. Grätzer proved that bounded ordered sets (in other words, posets with 0 and 1) are, up to isomorphism, exactly the Princ (L) of bounded lattices L. Here we prove that for each 0-separating boundpreserving monotone map ψ between two bounded ordered sets, there are a lattice L and a sublattice K of L such that, in essence, ψ is the map from Princ (K) to Princ (L) that sends a principal congruence to the congruence it generates in the larger lattice. © 2015, Akadémiai Kiadó, Budapest, Hungary. | |
856 | 4 | 0 | |u http://publicatio.bibl.u-szeged.hu/14547/1/czedli_representing-a-monotone-map-by-principal-lattice-congruences.pdf |z Dokumentum-elérés |
856 | 4 | 0 | |u http://publicatio.bibl.u-szeged.hu/14547/7/actamathhung_047_001_content.pdf |z Dokumentum-elérés |