Four-generated quasiorder lattices and their atoms in a four-generated sublattice

Quasiorders, also known as preorders, on a set A form a lattice Quo(A). We prove that if A is a finite set consisting of 2, 3, 5, 7, 9, or more than 10 elements, then Quo(A) is four-generated but not three-generated. Also, if A is countably infinite, then a four-generated sublattice contains all ato...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerző: Czédli Gábor
Dokumentumtípus: Cikk
Megjelent: 2017
Sorozat:COMMUNICATIONS IN ALGEBRA 45 No. 9
doi:10.1080/00927872.2016.1257710

mtmt:3187412
Online Access:http://publicatio.bibl.u-szeged.hu/14541
LEADER 01316nab a2200205 i 4500
001 publ14541
005 20190125155911.0
008 190125s2017 hu o 0|| zxx d
022 |a 0092-7872 
024 7 |a 10.1080/00927872.2016.1257710  |2 doi 
024 7 |a 3187412  |2 mtmt 
040 |a SZTE Publicatio Repozitórium  |b hun 
041 |a zxx 
100 1 |a Czédli Gábor 
245 1 0 |a Four-generated quasiorder lattices and their atoms in a four-generated sublattice  |h [elektronikus dokumentum] /  |c  Czédli Gábor 
260 |c 2017 
300 |a 4037-4049 
490 0 |a COMMUNICATIONS IN ALGEBRA  |v 45 No. 9 
520 3 |a Quasiorders, also known as preorders, on a set A form a lattice Quo(A). We prove that if A is a finite set consisting of 2, 3, 5, 7, 9, or more than 10 elements, then Quo(A) is four-generated but not three-generated. Also, if A is countably infinite, then a four-generated sublattice contains all atoms of Quo(A). These statements improve Ivan Chajda and the present author’s 1996 result, where six generators were constructed, and Tamás Dolgos and Júlia Kulin’s recent results, where five generators were given. © 2017 Taylor & Francis 
856 4 0 |u http://publicatio.bibl.u-szeged.hu/14541/1/czedli_four-generated-quasiorder-lattices-and-their-atoms-in-a-four-generated-sublattice.pdf  |z Dokumentum-elérés