Characterizing fully principal congruence representable distributive lattices
Motivated by a recent paper of G. Grätzer, a finite distributive lattice D is called fully principal congruence representable if for every subset Q of D containing 0, 1, and the set J(D) of nonzero join-irreducible elements of D, there exists a finite lattice L and an isomorphism from the congruence...
Elmentve itt :
Szerző: | |
---|---|
Dokumentumtípus: | Cikk |
Megjelent: |
2018
|
Sorozat: | ALGEBRA UNIVERSALIS
79 No. 1 |
doi: | 10.1007/s00012-018-0498-8 |
mtmt: | 3362775 |
Online Access: | http://publicatio.bibl.u-szeged.hu/14522 |
LEADER | 01892nab a2200205 i 4500 | ||
---|---|---|---|
001 | publ14522 | ||
005 | 20221129063524.0 | ||
008 | 190125s2018 hu o 0|| zxx d | ||
022 | |a 0002-5240 | ||
024 | 7 | |a 10.1007/s00012-018-0498-8 |2 doi | |
024 | 7 | |a 3362775 |2 mtmt | |
040 | |a SZTE Publicatio Repozitórium |b hun | ||
041 | |a zxx | ||
100 | 1 | |a Czédli Gábor | |
245 | 1 | 0 | |a Characterizing fully principal congruence representable distributive lattices |h [elektronikus dokumentum] / |c Czédli Gábor |
260 | |c 2018 | ||
490 | 0 | |a ALGEBRA UNIVERSALIS |v 79 No. 1 | |
520 | 3 | |a Motivated by a recent paper of G. Grätzer, a finite distributive lattice D is called fully principal congruence representable if for every subset Q of D containing 0, 1, and the set J(D) of nonzero join-irreducible elements of D, there exists a finite lattice L and an isomorphism from the congruence lattice of L onto D such that Q corresponds to the set of principal congruences of L under this isomorphism. A separate paper of the present author contains a necessary condition of full principal congruence representability: D should be planar with at most one join-reducible coatom. Here we prove that this condition is sufficient. Furthermore, even the automorphism group of L can arbitrarily be stipulated in this case. Also, we generalize a recent result of G. Grätzer on principal congruence representable subsets of a distributive lattice whose top element is join-irreducible by proving that the automorphism group of the lattice we construct can be arbitrary. © 2018, Springer International Publishing AG, part of Springer Nature. | |
856 | 4 | 0 | |u http://publicatio.bibl.u-szeged.hu/14522/1/czedli_characterizing-fully-principal-congruence-representable-distributive-lattices.pdf |z Dokumentum-elérés |
856 | 4 | 0 | |u http://publicatio.bibl.u-szeged.hu/14522/7/algebra_universlails_79_01_content.pdf |z Dokumentum-elérés |