Characterizing fully principal congruence representable distributive lattices

Motivated by a recent paper of G. Grätzer, a finite distributive lattice D is called fully principal congruence representable if for every subset Q of D containing 0, 1, and the set J(D) of nonzero join-irreducible elements of D, there exists a finite lattice L and an isomorphism from the congruence...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerző: Czédli Gábor
Dokumentumtípus: Cikk
Megjelent: 2018
Sorozat:ALGEBRA UNIVERSALIS 79 No. 1
doi:10.1007/s00012-018-0498-8

mtmt:3362775
Online Access:http://publicatio.bibl.u-szeged.hu/14522
LEADER 01892nab a2200205 i 4500
001 publ14522
005 20221129063524.0
008 190125s2018 hu o 0|| zxx d
022 |a 0002-5240 
024 7 |a 10.1007/s00012-018-0498-8  |2 doi 
024 7 |a 3362775  |2 mtmt 
040 |a SZTE Publicatio Repozitórium  |b hun 
041 |a zxx 
100 1 |a Czédli Gábor 
245 1 0 |a Characterizing fully principal congruence representable distributive lattices  |h [elektronikus dokumentum] /  |c  Czédli Gábor 
260 |c 2018 
490 0 |a ALGEBRA UNIVERSALIS  |v 79 No. 1 
520 3 |a Motivated by a recent paper of G. Grätzer, a finite distributive lattice D is called fully principal congruence representable if for every subset Q of D containing 0, 1, and the set J(D) of nonzero join-irreducible elements of D, there exists a finite lattice L and an isomorphism from the congruence lattice of L onto D such that Q corresponds to the set of principal congruences of L under this isomorphism. A separate paper of the present author contains a necessary condition of full principal congruence representability: D should be planar with at most one join-reducible coatom. Here we prove that this condition is sufficient. Furthermore, even the automorphism group of L can arbitrarily be stipulated in this case. Also, we generalize a recent result of G. Grätzer on principal congruence representable subsets of a distributive lattice whose top element is join-irreducible by proving that the automorphism group of the lattice we construct can be arbitrary. © 2018, Springer International Publishing AG, part of Springer Nature. 
856 4 0 |u http://publicatio.bibl.u-szeged.hu/14522/1/czedli_characterizing-fully-principal-congruence-representable-distributive-lattices.pdf  |z Dokumentum-elérés  
856 4 0 |u http://publicatio.bibl.u-szeged.hu/14522/7/algebra_universlails_79_01_content.pdf  |z Dokumentum-elérés