Topology indices as predictors of retention behavior of newly synthesized androstane 3-oximes in RP-UHPLC artificial intelligence approach /

The present study describes the application of artificial neural networks (ANNs), as artificial intelligence approach, as a tool in prediction of retention behavior of a series of newly synthesized series of androstane 3-oximes by using several molecular topology descriptors. The retention behavior...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Kovačević Strahinja
Karadžić Banjac Milica
Anojčić Jasmina
Ajduković Jovana
Podunavac-Kuzmanović Sanja
Testületi szerző: 30th International Symposium on Analytical and Environmental Problems
Dokumentumtípus: Könyv része
Megjelent: University of Szeged Szeged 2024
Sorozat:Proceedings of the International Symposium on Analytical and Environmental Problems 30
Kulcsszavak:Mesterséges intelligencia, Analitikai kémia, Gyógyszerkémia
Tárgyszavak:
Online Access:http://acta.bibl.u-szeged.hu/85748
LEADER 02389naa a2200289 i 4500
001 acta85748
005 20241126134101.0
008 241126s2024 hu o 100 eng d
020 |a 978-963-688-009-5 
040 |a SZTE Egyetemi Kiadványok Repozitórium  |b hun 
041 |a eng 
100 1 |a Kovačević Strahinja 
245 1 0 |a Topology indices as predictors of retention behavior of newly synthesized androstane 3-oximes in RP-UHPLC  |h [elektronikus dokumentum] :  |b artificial intelligence approach /  |c  Kovačević Strahinja 
260 |a University of Szeged  |b Szeged  |c 2024 
300 |a 318-322 
490 0 |a Proceedings of the International Symposium on Analytical and Environmental Problems  |v 30 
520 3 |a The present study describes the application of artificial neural networks (ANNs), as artificial intelligence approach, as a tool in prediction of retention behavior of a series of newly synthesized series of androstane 3-oximes by using several molecular topology descriptors. The retention behavior of the studied androstane derivatives was determined by using reversedphase ultra high performance liquid chromatography (RP-UHPLC) with C18 column, as stationary phase, and methanol/water mobile phase. The retention behavior was determined in the form of logarithm of capacity factor (logk). The ANN modeling was performed applying Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm and multi-layer perceptron (MLP) feedforward networks. The obtained model successfully correlates hyper Wiener index (HWI), Szeged index (SZG) and Wiener index (WI) with logk values. The model was validated by internal validation and based on various statistical parameters. The model can be used for the prediction of retention behavior of the compounds structurally similar to those used in the modeling. 
650 4 |a Természettudományok 
650 4 |a Számítás- és információtudomány 
650 4 |a Kémiai tudományok 
695 |a Mesterséges intelligencia, Analitikai kémia, Gyógyszerkémia 
700 0 2 |a Karadžić Banjac Milica  |e aut 
700 0 2 |a Anojčić Jasmina  |e aut 
700 0 2 |a Ajduković Jovana  |e aut 
700 0 2 |a Podunavac-Kuzmanović Sanja  |e aut 
711 |a 30th International Symposium on Analytical and Environmental Problems  |c Szeged  |d 2024. október 7-8. 
856 4 0 |u http://acta.bibl.u-szeged.hu/85748/1/proceedings_of_isaep_2024_318-322.pdf  |z Dokumentum-elérés