The Dirichlet problem in an unbounded cone-like domain for second order elliptic quasilinear equations with variable nonlinearity exponent
In this paper we consider the Dirichlet problem for quasi-linear second-order elliptic equation with the m(x)-Laplacian and the strong nonlinearity on the right side in an unbounded cone-like domain. We study the behavior of weak solutions to the problem at infinity and we find the sharp exponent of...
Elmentve itt :
Szerzők: | |
---|---|
Dokumentumtípus: | Folyóirat |
Megjelent: |
2023
|
Sorozat: | Electronic journal of qualitative theory of differential equations
|
Kulcsszavak: | Elliptikus egyenlet, Laplace-egyenlet, Dirichlet probléma |
doi: | 10.14232/ejqtde.2023.1.33 |
Online Access: | http://acta.bibl.u-szeged.hu/82283 |
LEADER | 01339nas a2200217 i 4500 | ||
---|---|---|---|
001 | acta82283 | ||
005 | 20231116135802.0 | ||
008 | 231116s2023 hu o 0|| eng d | ||
022 | |a 1417-3875 | ||
024 | 7 | |a 10.14232/ejqtde.2023.1.33 |2 doi | |
040 | |a SZTE Egyetemi Kiadványok Repozitórium |b hun | ||
041 | |a eng | ||
100 | 1 | |a Borsuk Mikhail | |
245 | 1 | 4 | |a The Dirichlet problem in an unbounded cone-like domain for second order elliptic quasilinear equations with variable nonlinearity exponent |h [elektronikus dokumentum] / |c Borsuk Mikhail |
260 | |c 2023 | ||
300 | |a 20 | ||
490 | 0 | |a Electronic journal of qualitative theory of differential equations | |
520 | 3 | |a In this paper we consider the Dirichlet problem for quasi-linear second-order elliptic equation with the m(x)-Laplacian and the strong nonlinearity on the right side in an unbounded cone-like domain. We study the behavior of weak solutions to the problem at infinity and we find the sharp exponent of the solution decreasing rate. We show that the exponent is related to the least eigenvalue of the eigenvalue problem for the Laplace–Beltrami operator on the unit sphere. | |
695 | |a Elliptikus egyenlet, Laplace-egyenlet, Dirichlet probléma | ||
700 | 0 | 1 | |a Wiśniewski Damian |e aut |
856 | 4 | 0 | |u http://acta.bibl.u-szeged.hu/82283/1/ejqtde_2023_033.pdf |z Dokumentum-elérés |