Positive radial solutions for a class of quasilinear Schrödinger equations in R3
This paper is concerned with the following quasilinear Schrödinger equations of the form: −∆u − u∆(u 2 ) + u = |u| p−2u, x ∈ R 3 where p ∈ (2, 12). By making use of the constrained minimization method on a special manifold, we prove that the existence of positive radial solutions of the above proble...
Elmentve itt :
Szerzők: |
Wang Zhongxiang Jia Gao Hu Weifeng |
---|---|
Dokumentumtípus: | Folyóirat |
Megjelent: |
2022
|
Sorozat: | Electronic journal of qualitative theory of differential equations
|
Kulcsszavak: | Schrödinger-egyenlet - kvázilineáris |
Tárgyszavak: | |
doi: | 10.14232/ejqtde.2022.1.58 |
Online Access: | http://acta.bibl.u-szeged.hu/78343 |
Hasonló tételek
-
Asymptotic behavior of multiple solutions for quasilinear Schrödinger equations
Szerző: Zhang Xian, et al.
Megjelent: (2022) -
Positive solutions for a class of generalized quasilinear Schrödinger equations involving concave and convex nonlinearities in Orlicz space
Szerző: Meng Yan, et al.
Megjelent: (2021) -
Existence of infinitely many radial and non-radial solutions for quasilinear Schrödinger equations with general nonlinearity
Szerző: Jianhua Chen, et al.
Megjelent: (2017) -
Existence of positive solutions for a class of p-Laplacian type generalized quasilinear Schrödinger equations with critical growth and potential vanishing at infinity
Szerző: Li Zhen
Megjelent: (2023) -
Antisymmetric solutions for a class of quasilinear defocusing Schrödinger equations
Szerző: Soares Gamboa Janette, et al.
Megjelent: (2020)