Multiple nonsymmetric nodal solutions for quasilinear Schrödinger system
In this paper, we consider the quasilinear Schrödinger system in RN (N ≥ 3): −∆u + A(x)u − 1 2 ∆(u 2 )u = 2α |u| α−2u|v| −∆v + Bv − 1 2 ∆(v 2 )v = 2β |u| |v| β−2 v, where α, β > 1, 2 < α + β < 4N N−2 , B > 0 is a constant. By using a constrained minimization on Nehari–Pohožaev set, for a...
Elmentve itt :
Szerzők: | |
---|---|
Dokumentumtípus: | Folyóirat |
Megjelent: |
2022
|
Sorozat: | Electronic journal of qualitative theory of differential equations
|
Kulcsszavak: | Schrödinger rendszer - kvázilineáris, Nehari-Pohožaev halmaz |
Tárgyszavak: | |
doi: | 10.14232/ejqtde.2022.1.57 |
Online Access: | http://acta.bibl.u-szeged.hu/78342 |
LEADER | 01273nas a2200229 i 4500 | ||
---|---|---|---|
001 | acta78342 | ||
005 | 20230313114933.0 | ||
008 | 230313s2022 hu o 0|| eng d | ||
022 | |a 1417-3875 | ||
024 | 7 | |a 10.14232/ejqtde.2022.1.57 |2 doi | |
040 | |a SZTE Egyetemi Kiadványok Repozitórium |b hun | ||
041 | |a eng | ||
100 | 1 | |a Chen Jianqing | |
245 | 1 | 0 | |a Multiple nonsymmetric nodal solutions for quasilinear Schrödinger system |h [elektronikus dokumentum] / |c Chen Jianqing |
260 | |c 2022 | ||
490 | 0 | |a Electronic journal of qualitative theory of differential equations | |
520 | 3 | |a In this paper, we consider the quasilinear Schrödinger system in RN (N ≥ 3): −∆u + A(x)u − 1 2 ∆(u 2 )u = 2α |u| α−2u|v| −∆v + Bv − 1 2 ∆(v 2 )v = 2β |u| |v| β−2 v, where α, β > 1, 2 < α + β < 4N N−2 , B > 0 is a constant. By using a constrained minimization on Nehari–Pohožaev set, for any given integer s ≥ 2, we construct a nonradially symmetrical nodal solution with its 2s nodal domains. | |
650 | 4 | |a Természettudományok | |
650 | 4 | |a Matematika | |
695 | |a Schrödinger rendszer - kvázilineáris, Nehari-Pohožaev halmaz | ||
700 | 0 | 1 | |a Zhang Qian |e aut |
856 | 4 | 0 | |u http://acta.bibl.u-szeged.hu/78342/1/ejqtde_2022_057.pdf |z Dokumentum-elérés |