Stabilization via delay feedback for highly nonlinear stochastic time-varying delay systems with Markovian switching and Poisson jump

Little work seems to be known about stabilization results of highly nonlinear stochastic time-varying delay systems (STVDSs) with Markovian switching and Poisson jump. This paper is concerned with the stabilization problem for a class of STVDSs with Markovian switching and Poisson jump. The coeffici...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Li Guangjie
Hu Zhipei
Deng Feiqi
Zhang Huiyan
Dokumentumtípus: Folyóirat
Megjelent: 2022
Sorozat:Electronic journal of qualitative theory of differential equations
Kulcsszavak:Differenciálegyenlet
Tárgyszavak:
doi:10.14232/ejqtde.2022.1.49

Online Access:http://acta.bibl.u-szeged.hu/78334
LEADER 01606nas a2200253 i 4500
001 acta78334
005 20230313103853.0
008 230313s2022 hu o 0|| eng d
022 |a 1417-3875 
024 7 |a 10.14232/ejqtde.2022.1.49  |2 doi 
040 |a SZTE Egyetemi Kiadványok Repozitórium  |b hun 
041 |a eng 
100 1 |a Li Guangjie 
245 1 0 |a Stabilization via delay feedback for highly nonlinear stochastic time-varying delay systems with Markovian switching and Poisson jump  |h [elektronikus dokumentum] /  |c  Li Guangjie 
260 |c 2022 
490 0 |a Electronic journal of qualitative theory of differential equations 
520 3 |a Little work seems to be known about stabilization results of highly nonlinear stochastic time-varying delay systems (STVDSs) with Markovian switching and Poisson jump. This paper is concerned with the stabilization problem for a class of STVDSs with Markovian switching and Poisson jump. The coefficients of such systems do not satisfy the conventional linear growth conditions, but are subject to high nonlinearity. The aim of this paper is to design a delay feedback controller to make an unstable highly nonlinear STVDSs with Markovian switching and Poisson jump H∞-stable and asymptotically stable. Besides, an illustrative example is provided to support the theoretical results. 
650 4 |a Természettudományok 
650 4 |a Matematika 
695 |a Differenciálegyenlet 
700 0 1 |a Hu Zhipei  |e aut 
700 0 1 |a Deng Feiqi  |e aut 
700 0 1 |a Zhang Huiyan  |e aut 
856 4 0 |u http://acta.bibl.u-szeged.hu/78334/1/ejqtde_2022_049.pdf  |z Dokumentum-elérés