Twitter bot detection using deep learning

Social media platforms have revolutionized how people interact with each other and how people gain information. However, social media platforms such as Twitter and Facebook quickly became the platform for public manipulation and spreading or amplifying political or ideological misinformation. Althou...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Kenyeres Ádám
Kovács György
Testületi szerző: Magyar számítógépes nyelvészeti konferencia (18.) (2022) (Szeged)
Dokumentumtípus: Könyv része
Megjelent: 2022
Sorozat:Magyar Számítógépes Nyelvészeti Konferencia 18
Kulcsszavak:Nyelvészet - számítógép alkalmazása, Média - közösségi
Tárgyszavak:
Online Access:http://acta.bibl.u-szeged.hu/75879
LEADER 02002naa a2200265 i 4500
001 acta75879
005 20221108114906.0
008 220525s2022 hu o 1|| eng d
020 |a 978-963-306-848-9 
040 |a SZTE Egyetemi Kiadványok Repozitórium  |b hun 
041 |a eng 
100 1 |a Kenyeres Ádám 
245 1 0 |a Twitter bot detection using deep learning  |h [elektronikus dokumentum] /  |c  Kenyeres Ádám 
260 |c 2022 
300 |a 257-269 
490 0 |a Magyar Számítógépes Nyelvészeti Konferencia  |v 18 
520 3 |a Social media platforms have revolutionized how people interact with each other and how people gain information. However, social media platforms such as Twitter and Facebook quickly became the platform for public manipulation and spreading or amplifying political or ideological misinformation. Although malicious content can be shared by individuals, today millions of individual and coordinated automated accounts exist, also called bots which share hate, spread misinformation and manipulate public opinion without any human intervention. The work presented in this paper aims at designing and implementing deep learning approaches that successfully identify social media bots. Moreover we show that deep learning models can yield an accuracy of 0.9 on the PAN 2019 Bots and Gender Profiling dataset. In addition, the findings of this work also show that pre-trained models will be able to improve the accuracy of deep learning models and compete with Classical Machine Learning methods even on limited dataset. 
650 4 |a Természettudományok 
650 4 |a Számítás- és információtudomány 
650 4 |a Bölcsészettudományok 
650 4 |a Nyelvek és irodalom 
695 |a Nyelvészet - számítógép alkalmazása, Média - közösségi 
700 0 1 |a Kovács György  |e aut 
710 |a Magyar számítógépes nyelvészeti konferencia (18.) (2022) (Szeged) 
856 4 0 |u http://acta.bibl.u-szeged.hu/75879/1/msznykonf_018_257-269.pdf  |z Dokumentum-elérés