Lamps in slim rectangular planar semimodular lattices

A planar (upper) semimodular lattice L is slim if the five-element nondistributive modular lattice M3 does not occur among its sublattices. (Planar lattices are finite by definition.) Slim rectangular lattices as particular slim planar semimodular lattices were defined by G. Grätzer and E. Knapp in...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerző: Czédli Gábor
Dokumentumtípus: Cikk
Megjelent: 2021
Sorozat:Acta scientiarum mathematicarum 87 No. 3-4
Kulcsszavak:Matematika, Algebra
Tárgyszavak:
doi:10.14232/actasm-021-865-y

Online Access:http://acta.bibl.u-szeged.hu/75847
LEADER 01779nab a2200229 i 4500
001 acta75847
005 20220524125846.0
008 220524s2021 hu o 0|| eng d
022 |a 2064-8316 
024 7 |a 10.14232/actasm-021-865-y  |2 doi 
040 |a SZTE Egyetemi Kiadványok Repozitórium  |b hun 
041 |a eng 
100 1 |a Czédli Gábor 
245 1 0 |a Lamps in slim rectangular planar semimodular lattices  |h [elektronikus dokumentum] /  |c  Czédli Gábor 
260 |c 2021 
300 |a 381-413 
490 0 |a Acta scientiarum mathematicarum  |v 87 No. 3-4 
520 3 |a A planar (upper) semimodular lattice L is slim if the five-element nondistributive modular lattice M3 does not occur among its sublattices. (Planar lattices are finite by definition.) Slim rectangular lattices as particular slim planar semimodular lattices were defined by G. Grätzer and E. Knapp in 2007. In 2009, they also proved that the congruence lattices of slim planar semimodular lattices with at least three elements are the same as those of slim rectangular lattices. In order to provide an effective tool for studying these congruence lattices, we introduce the concept of lamps of slim rectangular lattices and prove several of their properties. Lamps and several tools based on them allow us to prove in a new and easy way that the congruence lattices of slim planar semimodular lattices satisfy the two previously known properties. Also, we use lamps to prove that these congruence lattices satisfy four new properties including the Two-pendant Four-crown Property and the Forbidden Marriage Property. 
650 4 |a Természettudományok 
650 4 |a Matematika 
695 |a Matematika, Algebra 
856 4 0 |u http://acta.bibl.u-szeged.hu/75847/1/math_087_numb_003-004_381-413.pdf  |z Dokumentum-elérés