Global existence and blow-up for semilinear parabolic equation with critical exponent in RN

In this paper, we use the self-similar transformation and the modified potential well method to study the long time behaviors of solutions to the classical semilinear parabolic equation associated with critical Sobolev exponent in RN. Global existence and finite time blowup of solutions are proved w...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Fang Fei
Zhang Binlin
Dokumentumtípus: Folyóirat
Megjelent: 2022
Sorozat:Electronic journal of qualitative theory of differential equations
Kulcsszavak:Differenciálegyenlet - parabolikus
Tárgyszavak:
doi:10.14232/ejqtde.2022.1.3

Online Access:http://acta.bibl.u-szeged.hu/75818
LEADER 01668nas a2200241 i 4500
001 acta75818
005 20220524081558.0
008 220523s2022 hu o 0|| eng d
022 |a 1417-3875 
024 7 |a 10.14232/ejqtde.2022.1.3  |2 doi 
040 |a SZTE Egyetemi Kiadványok Repozitórium  |b hun 
041 |a eng 
100 1 |a Fang Fei 
245 1 0 |a Global existence and blow-up for semilinear parabolic equation with critical exponent in RN  |h [elektronikus dokumentum] /  |c  Fang Fei 
260 |c 2022 
300 |a 23 
490 0 |a Electronic journal of qualitative theory of differential equations 
520 3 |a In this paper, we use the self-similar transformation and the modified potential well method to study the long time behaviors of solutions to the classical semilinear parabolic equation associated with critical Sobolev exponent in RN. Global existence and finite time blowup of solutions are proved when the initial energy is in three cases. When the initial energy is low or critical, we not only give a threshold result for the global existence and blowup of solutions, but also obtain the decay rate of the L 2 norm for global solutions. When the initial energy is high, sufficient conditions for the global existence and blowup of solutions are also provided. We extend the recent results which were obtained in [R. Ikehata, M. Ishiwata, T. Suzuki, Ann. Inst. H. Poincaré Anal. Non Linéaire 27(2010), No. 3, 877– 900]. 
650 4 |a Természettudományok 
650 4 |a Matematika 
695 |a Differenciálegyenlet - parabolikus 
700 0 1 |a Zhang Binlin  |e aut 
856 4 0 |u http://acta.bibl.u-szeged.hu/75818/1/ejqtde_2022_003.pdf  |z Dokumentum-elérés