New regularity coefficients
We give two new characterizations of the notion of Lyapunov regularity in terms of the lower and upper exponential growth rates of the singular values. These characterizations motivate the introduction of new regularity coefficients. In particular, we establish relations between these regularity coe...
Elmentve itt :
Szerzők: | |
---|---|
Dokumentumtípus: | Folyóirat |
Megjelent: |
2022
|
Sorozat: | Electronic journal of qualitative theory of differential equations
|
Kulcsszavak: | Ljapunov szabályosság, Szabályossági együtthatók |
Tárgyszavak: | |
doi: | 10.14232/ejqtde.2022.1.1 |
Online Access: | http://acta.bibl.u-szeged.hu/75816 |
LEADER | 01284nas a2200241 i 4500 | ||
---|---|---|---|
001 | acta75816 | ||
005 | 20220523135853.0 | ||
008 | 220523s2022 hu o 0|| eng d | ||
022 | |a 1417-3875 | ||
024 | 7 | |a 10.14232/ejqtde.2022.1.1 |2 doi | |
040 | |a SZTE Egyetemi Kiadványok Repozitórium |b hun | ||
041 | |a eng | ||
100 | 1 | |a Barreira Luis | |
245 | 1 | 0 | |a New regularity coefficients |h [elektronikus dokumentum] / |c Barreira Luis |
260 | |c 2022 | ||
300 | |a 25 | ||
490 | 0 | |a Electronic journal of qualitative theory of differential equations | |
520 | 3 | |a We give two new characterizations of the notion of Lyapunov regularity in terms of the lower and upper exponential growth rates of the singular values. These characterizations motivate the introduction of new regularity coefficients. In particular, we establish relations between these regularity coefficients and the Lyapunov regularity coefficient. Moreover, we construct explicitly bounded sequences of matrices attaining specific values of the new regularity coefficients. | |
650 | 4 | |a Természettudományok | |
650 | 4 | |a Matematika | |
695 | |a Ljapunov szabályosság, Szabályossági együtthatók | ||
700 | 0 | 1 | |a Valls Claudia |e aut |
856 | 4 | 0 | |u http://acta.bibl.u-szeged.hu/75816/1/ejqtde_2022_001.pdf |z Dokumentum-elérés |