Regularity properties and blow-up of the solutions for improved Boussinesq equations

In this paper, we study the Cauchy problem for linear and nonlinear Boussinesq type equations that include the general differential operators. First, by virtue of the Fourier multipliers, embedding theorems in Sobolev and Besov spaces, the existence, uniqueness, and regularity properties of the solu...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Shakhmurov Veli
Shahmurov Rishad
Dokumentumtípus: Folyóirat
Megjelent: 2021
Sorozat:Electronic journal of qualitative theory of differential equations
Kulcsszavak:Boussinesq egyenlet, Differenciálegyenlet
Tárgyszavak:
doi:10.14232/ejqtde.2021.1.89

Online Access:http://acta.bibl.u-szeged.hu/75810
LEADER 02170nas a2200241 i 4500
001 acta75810
005 20220523131506.0
008 220523s2021 hu o 0|| eng d
022 |a 1417-3875 
024 7 |a 10.14232/ejqtde.2021.1.89  |2 doi 
040 |a SZTE Egyetemi Kiadványok Repozitórium  |b hun 
041 |a eng 
100 1 |a Shakhmurov Veli 
245 1 0 |a Regularity properties and blow-up of the solutions for improved Boussinesq equations  |h [elektronikus dokumentum] /  |c  Shakhmurov Veli 
260 |c 2021 
300 |a 21 
490 0 |a Electronic journal of qualitative theory of differential equations 
520 3 |a In this paper, we study the Cauchy problem for linear and nonlinear Boussinesq type equations that include the general differential operators. First, by virtue of the Fourier multipliers, embedding theorems in Sobolev and Besov spaces, the existence, uniqueness, and regularity properties of the solution of the Cauchy problem for the corresponding linear equation are established. Here, L p -estimates for a solution with respect to space variables are obtained uniformly in time depending on the given data functions. Then, the estimates for the solution of linearized equation and perturbation of operators can be used to obtain the existence, uniqueness, regularity properties, and blow-up of solution at the finite time of the Cauchy for nonlinear for same classes of Boussinesq equations. Here, the existence, uniqueness, L p -regularity, and blow-up properties of the solution of the Cauchy problem for Boussinesq equations with differential operators coefficients are handled associated with the growth nature of symbols of these differential operators and their interrelationships. We can obtain the existence, uniqueness, and qualitative properties of different classes of improved Boussinesq equations by choosing the given differential operators, which occur in a wide variety of physical systems. 
650 4 |a Természettudományok 
650 4 |a Matematika 
695 |a Boussinesq egyenlet, Differenciálegyenlet 
700 0 1 |a Shahmurov Rishad  |e aut 
856 4 0 |u http://acta.bibl.u-szeged.hu/75810/1/ejqtde_2021_089.pdf  |z Dokumentum-elérés