Asymptotic distributions for weighted power sums of extreme values

Let X1,n ≤ · · · ≤ Xn,n be the order statistics of n independent random variables with a common distribution function F having right heavy tail with tail index γ. Given known constants di,n, 1 ≤ i ≤ n, consider the weighted power sums Pkn i=1 dn+1−i,n logp Xn+1−i,n, where p > 0 and the kn are pos...

Full description

Saved in:
Bibliographic Details
Main Authors: Oluoch Lillian Achola
Viharos László
Format: Article
Published: 2021
Series:Acta scientiarum mathematicarum 87 No. 1-2
Kulcsszavak:Matematika
doi:10.14232/actasm-020-323-9

Online Access:http://acta.bibl.u-szeged.hu/73932
LEADER 01347nab a2200217 i 4500
001 acta73932
005 20211116095137.0
008 211116s2021 hu o 0|| eng d
022 |a 2064-8316 
024 7 |a 10.14232/actasm-020-323-9  |2 doi 
040 |a SZTE Egyetemi Kiadványok Repozitórium  |b hun 
041 |a eng 
100 1 |a Oluoch Lillian Achola 
245 1 0 |a Asymptotic distributions for weighted power sums of extreme values  |h [elektronikus dokumentum] /  |c  Oluoch Lillian Achola 
260 |c 2021 
300 |a 331-346 
490 0 |a Acta scientiarum mathematicarum  |v 87 No. 1-2 
520 3 |a Let X1,n ≤ · · · ≤ Xn,n be the order statistics of n independent random variables with a common distribution function F having right heavy tail with tail index γ. Given known constants di,n, 1 ≤ i ≤ n, consider the weighted power sums Pkn i=1 dn+1−i,n logp Xn+1−i,n, where p > 0 and the kn are positive integers such that kn → ∞ and kn/n → 0 as n → ∞. Under some constraints on the weights di,n, we prove asymptotic normality for the power sums over the whole heavy-tail model. We apply the obtained result to construct a new class of estimators for the parameter γ. 
695 |a Matematika 
700 0 1 |a Viharos László  |e aut 
856 4 0 |u http://acta.bibl.u-szeged.hu/73932/1/math_087_numb_001-002_331-346.pdf  |z Dokumentum-elérés