On a subclass of norm attaining operators

A bounded linear operator T : H1 → H2, where H1, H2 are Hilbert spaces, is said to be norm attaining if there exists a unit vector x ∈ H1 such that kT xk = kTk and absolutely norm attaining (or AN -operator) if T|M : M → H2 is norm attaining for every closed subspace M of H1. We prove a structure th...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Ramesh Golla
Osaka Hiroyuki
Dokumentumtípus: Cikk
Megjelent: 2021
Sorozat:Acta scientiarum mathematicarum 87 No. 1-2
Kulcsszavak:Matematika
doi:10.14232/actasm-020-426-9

Online Access:http://acta.bibl.u-szeged.hu/73928
Leíró adatok
Tartalmi kivonat:A bounded linear operator T : H1 → H2, where H1, H2 are Hilbert spaces, is said to be norm attaining if there exists a unit vector x ∈ H1 such that kT xk = kTk and absolutely norm attaining (or AN -operator) if T|M : M → H2 is norm attaining for every closed subspace M of H1. We prove a structure theorem for positive operators in β(H) := {T ∈ B(H) : T|M : M → M is norm attaining for all M ∈ RT }, where RT is the set of all reducing subspaces of T. We also compare our results with those of absolutely norm attaining operators. Later, we characterize all operators in this new class.
Terjedelem/Fizikai jellemzők:247-263
ISSN:2064-8316