Order structure of U-semiabundant semigroups and rings Part I: Left Lawson’s order /

In 1991, Lawson introduced three partial orders on reduced Usemiabundant semigroups. Their definitions are formally similar to recently discovered characteristics of the diamond, left star and right star orders respectively on Rickart *-rings; lattice properties of these orders have been studied by...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerző: Cīrulis Jānis
Dokumentumtípus: Cikk
Megjelent: 2020
Sorozat:Acta scientiarum mathematicarum 86 No. 3-4
Kulcsszavak:Matematika
doi:10.14232/actasm-019-426-3

Online Access:http://acta.bibl.u-szeged.hu/73896
LEADER 01517nab a2200205 i 4500
001 acta73896
005 20211115130527.0
008 211115s2020 hu o 0|| eng d
022 |a 2064-8316 
024 7 |a 10.14232/actasm-019-426-3  |2 doi 
040 |a SZTE Egyetemi Kiadványok Repozitórium  |b hun 
041 |a eng 
100 1 |a Cīrulis Jānis 
245 1 0 |a Order structure of U-semiabundant semigroups and rings   |h [elektronikus dokumentum] :  |b Part I: Left Lawson’s order /  |c  Cīrulis Jānis 
260 |c 2020 
300 |a 359-403 
490 0 |a Acta scientiarum mathematicarum  |v 86 No. 3-4 
520 3 |a In 1991, Lawson introduced three partial orders on reduced Usemiabundant semigroups. Their definitions are formally similar to recently discovered characteristics of the diamond, left star and right star orders respectively on Rickart *-rings; lattice properties of these orders have been studied by several authors. Motivated by these similarities, we turn to the lattice structure of U-semiabundant semigroups and rings under Lawson’s orders. In this paper, we deal with his order 6l on (a version of) right U-semiabundant semigroups and rings. In particular, existence of meets is investigated, it is shown that (under some natural assumptions) every initial section of such a ring is an orthomodular lattice, and explicit descriptions of the corresponding lattice operations are given. 
695 |a Matematika 
856 4 0 |u http://acta.bibl.u-szeged.hu/73896/1/math_086_numb_003-004_359-403.pdf  |z Dokumentum-elérés