On the asymptotic behaviour of solutions of an asymptotically Lotka-Volterra model

We make more realistic our model [Nonlinear Anal. 73(2010), 650–659] on the coexistence of fishes and plants in Lake Tanganyika. The new model is an asymptotically autonomous system whose limiting equation is a Lotka–Volterra system. We give conditions for the phenomenon that the trajectory of any s...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Dénes Attila
Hatvani László
Dokumentumtípus: Folyóirat
Megjelent: 2016
Sorozat:Electronic journal of qualitative theory of differential equations : special edition 2 No. 67
Kulcsszavak:Differenciálegyenlet
doi:10.14232/ejqtde.2016.1.67

Online Access:http://acta.bibl.u-szeged.hu/73734
LEADER 01541nas a2200217 i 4500
001 acta73734
005 20211112094206.0
008 211111s2016 hu o 0|| eng d
022 |a 1417-3875 
024 7 |a 10.14232/ejqtde.2016.1.67  |2 doi 
040 |a SZTE Egyetemi Kiadványok Repozitórium  |b hun 
041 |a eng 
100 1 |a Dénes Attila 
245 1 3 |a On the asymptotic behaviour of solutions of an asymptotically Lotka-Volterra model  |h [elektronikus dokumentum] /  |c  Dénes Attila 
260 |c 2016 
300 |a 10 
490 0 |a Electronic journal of qualitative theory of differential equations : special edition  |v 2 No. 67 
520 3 |a We make more realistic our model [Nonlinear Anal. 73(2010), 650–659] on the coexistence of fishes and plants in Lake Tanganyika. The new model is an asymptotically autonomous system whose limiting equation is a Lotka–Volterra system. We give conditions for the phenomenon that the trajectory of any solution of the original nonautonomous system “rolls up” onto a cycle of the limiting Lotka–Volterra equation as t → ∞, which means that the limit set of the solution of the non-autonomous system coincides with the cycle. A counterexample is constructed showing that the key integral condition on the coefficient function in the original non-autonomous model cannot be dropped. Computer simulations illustrate the results. 
695 |a Differenciálegyenlet 
700 0 1 |a Hatvani László  |e aut 
856 4 0 |u http://acta.bibl.u-szeged.hu/73734/1/ejqtde_spec_002_2016_067.pdf  |z Dokumentum-elérés