Multiple positive solutions for singular anisotropic Dirichlet problems
We consider a nonlinear Dirichlet problem driven by the variable exponent (anisotropic) p-Laplacian and a reaction that has the competing effects of a singular term and of a superlinear perturbation. There is no parameter in the equation (nonparametric problem). Using variational tools together with...
Elmentve itt :
Szerzők: | |
---|---|
Dokumentumtípus: | Folyóirat |
Megjelent: |
2021
|
Sorozat: | Electronic journal of qualitative theory of differential equations
|
Kulcsszavak: | Differenciálegyenlet, Dirichlet probléma |
doi: | 10.14232/ejqtde.2021.1.47 |
Online Access: | http://acta.bibl.u-szeged.hu/73699 |
LEADER | 01190nas a2200217 i 4500 | ||
---|---|---|---|
001 | acta73699 | ||
005 | 20211108154637.0 | ||
008 | 211108s2021 hu o 0|| eng d | ||
022 | |a 1417-3875 | ||
024 | 7 | |a 10.14232/ejqtde.2021.1.47 |2 doi | |
040 | |a SZTE Egyetemi Kiadványok Repozitórium |b hun | ||
041 | |a eng | ||
100 | 1 | |a Liu Zhenhai | |
245 | 1 | 0 | |a Multiple positive solutions for singular anisotropic Dirichlet problems |h [elektronikus dokumentum] / |c Liu Zhenhai |
260 | |c 2021 | ||
300 | |a 12 | ||
490 | 0 | |a Electronic journal of qualitative theory of differential equations | |
520 | 3 | |a We consider a nonlinear Dirichlet problem driven by the variable exponent (anisotropic) p-Laplacian and a reaction that has the competing effects of a singular term and of a superlinear perturbation. There is no parameter in the equation (nonparametric problem). Using variational tools together with truncation and comparison techniques, we show that the problem has at least two positive smooth solutions. | |
695 | |a Differenciálegyenlet, Dirichlet probléma | ||
700 | 0 | 1 | |a Papageorgiou Nikolaos S. |e aut |
856 | 4 | 0 | |u http://acta.bibl.u-szeged.hu/73699/1/ejqtde_2021_047.pdf |z Dokumentum-elérés |