Multiple positive solutions for singular anisotropic Dirichlet problems

We consider a nonlinear Dirichlet problem driven by the variable exponent (anisotropic) p-Laplacian and a reaction that has the competing effects of a singular term and of a superlinear perturbation. There is no parameter in the equation (nonparametric problem). Using variational tools together with...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Liu Zhenhai
Papageorgiou Nikolaos S.
Dokumentumtípus: Folyóirat
Megjelent: 2021
Sorozat:Electronic journal of qualitative theory of differential equations
Kulcsszavak:Differenciálegyenlet, Dirichlet probléma
doi:10.14232/ejqtde.2021.1.47

Online Access:http://acta.bibl.u-szeged.hu/73699
LEADER 01190nas a2200217 i 4500
001 acta73699
005 20211108154637.0
008 211108s2021 hu o 0|| eng d
022 |a 1417-3875 
024 7 |a 10.14232/ejqtde.2021.1.47  |2 doi 
040 |a SZTE Egyetemi Kiadványok Repozitórium  |b hun 
041 |a eng 
100 1 |a Liu Zhenhai 
245 1 0 |a Multiple positive solutions for singular anisotropic Dirichlet problems  |h [elektronikus dokumentum] /  |c  Liu Zhenhai 
260 |c 2021 
300 |a 12 
490 0 |a Electronic journal of qualitative theory of differential equations 
520 3 |a We consider a nonlinear Dirichlet problem driven by the variable exponent (anisotropic) p-Laplacian and a reaction that has the competing effects of a singular term and of a superlinear perturbation. There is no parameter in the equation (nonparametric problem). Using variational tools together with truncation and comparison techniques, we show that the problem has at least two positive smooth solutions. 
695 |a Differenciálegyenlet, Dirichlet probléma 
700 0 1 |a Papageorgiou Nikolaos S.  |e aut 
856 4 0 |u http://acta.bibl.u-szeged.hu/73699/1/ejqtde_2021_047.pdf  |z Dokumentum-elérés