Blow-up analysis in a quasilinear parabolic system coupled via nonlinear boundary flux
This paper deals with the blow-up of the solution for a system of evolution pLaplacian equations uit = div(|∇ui p−2∇ui) (i = 1, 2, . . . , k) with nonlinear boundary flux. Under certain conditions on the nonlinearities and data, it is shown that blow-up will occur at some finite time. Moreover, when...
Elmentve itt :
Szerzők: | |
---|---|
Dokumentumtípus: | Folyóirat |
Megjelent: |
2021
|
Sorozat: | Electronic journal of qualitative theory of differential equations
|
Kulcsszavak: | Differenciálegyenlet |
doi: | 10.14232/ejqtde.2021.1.13 |
Online Access: | http://acta.bibl.u-szeged.hu/73665 |
LEADER | 01224nas a2200229 i 4500 | ||
---|---|---|---|
001 | acta73665 | ||
005 | 20211108095603.0 | ||
008 | 211108s2021 hu o 0|| eng d | ||
022 | |a 1417-3875 | ||
024 | 7 | |a 10.14232/ejqtde.2021.1.13 |2 doi | |
040 | |a SZTE Egyetemi Kiadványok Repozitórium |b hun | ||
041 | |a eng | ||
100 | 1 | |a Zheng Pan | |
245 | 1 | 0 | |a Blow-up analysis in a quasilinear parabolic system coupled via nonlinear boundary flux |h [elektronikus dokumentum] / |c Zheng Pan |
260 | |c 2021 | ||
300 | |a 13 | ||
490 | 0 | |a Electronic journal of qualitative theory of differential equations | |
520 | 3 | |a This paper deals with the blow-up of the solution for a system of evolution pLaplacian equations uit = div(|∇ui p−2∇ui) (i = 1, 2, . . . , k) with nonlinear boundary flux. Under certain conditions on the nonlinearities and data, it is shown that blow-up will occur at some finite time. Moreover, when blow-up does occur, we obtain the upper and lower bounds for the blow-up time. This paper generalizes the previous results. | |
695 | |a Differenciálegyenlet | ||
700 | 0 | 1 | |a Xu Zhonghua |e aut |
700 | 0 | 1 | |a Gao Zhangqin |e aut |
856 | 4 | 0 | |u http://acta.bibl.u-szeged.hu/73665/1/ejqtde_2021_013.pdf |z Dokumentum-elérés |