Blow-up analysis in a quasilinear parabolic system coupled via nonlinear boundary flux

This paper deals with the blow-up of the solution for a system of evolution pLaplacian equations uit = div(|∇ui p−2∇ui) (i = 1, 2, . . . , k) with nonlinear boundary flux. Under certain conditions on the nonlinearities and data, it is shown that blow-up will occur at some finite time. Moreover, when...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Zheng Pan
Xu Zhonghua
Gao Zhangqin
Dokumentumtípus: Folyóirat
Megjelent: 2021
Sorozat:Electronic journal of qualitative theory of differential equations
Kulcsszavak:Differenciálegyenlet
doi:10.14232/ejqtde.2021.1.13

Online Access:http://acta.bibl.u-szeged.hu/73665
LEADER 01224nas a2200229 i 4500
001 acta73665
005 20211108095603.0
008 211108s2021 hu o 0|| eng d
022 |a 1417-3875 
024 7 |a 10.14232/ejqtde.2021.1.13  |2 doi 
040 |a SZTE Egyetemi Kiadványok Repozitórium  |b hun 
041 |a eng 
100 1 |a Zheng Pan 
245 1 0 |a Blow-up analysis in a quasilinear parabolic system coupled via nonlinear boundary flux  |h [elektronikus dokumentum] /  |c  Zheng Pan 
260 |c 2021 
300 |a 13 
490 0 |a Electronic journal of qualitative theory of differential equations 
520 3 |a This paper deals with the blow-up of the solution for a system of evolution pLaplacian equations uit = div(|∇ui p−2∇ui) (i = 1, 2, . . . , k) with nonlinear boundary flux. Under certain conditions on the nonlinearities and data, it is shown that blow-up will occur at some finite time. Moreover, when blow-up does occur, we obtain the upper and lower bounds for the blow-up time. This paper generalizes the previous results. 
695 |a Differenciálegyenlet 
700 0 1 |a Xu Zhonghua  |e aut 
700 0 1 |a Gao Zhangqin  |e aut 
856 4 0 |u http://acta.bibl.u-szeged.hu/73665/1/ejqtde_2021_013.pdf  |z Dokumentum-elérés