Coupled nonautonomous inclusion systems with spatially variable exponents

A family of nonautonomous coupled inclusions governed by p(x)-Laplacian operators with large diffusion is investigated. The existence of solutions and pullback attractors as well as the generation of a generalized process are established. It is shown that the asymptotic dynamics is determined by a t...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Kloeden Peter E.
Simsen Jacson
Dokumentumtípus: Folyóirat
Megjelent: 2021
Sorozat:Electronic journal of qualitative theory of differential equations
Kulcsszavak:Differenciálegyenlet
doi:10.14232/ejqtde.2021.1.10

Online Access:http://acta.bibl.u-szeged.hu/73662
LEADER 01328nas a2200217 i 4500
001 acta73662
005 20211108093341.0
008 211108s2021 hu o 0|| eng d
022 |a 1417-3875 
024 7 |a 10.14232/ejqtde.2021.1.10  |2 doi 
040 |a SZTE Egyetemi Kiadványok Repozitórium  |b hun 
041 |a eng 
100 1 |a Kloeden Peter E. 
245 1 0 |a Coupled nonautonomous inclusion systems with spatially variable exponents  |h [elektronikus dokumentum] /  |c  Kloeden Peter E. 
260 |c 2021 
300 |a 17 
490 0 |a Electronic journal of qualitative theory of differential equations 
520 3 |a A family of nonautonomous coupled inclusions governed by p(x)-Laplacian operators with large diffusion is investigated. The existence of solutions and pullback attractors as well as the generation of a generalized process are established. It is shown that the asymptotic dynamics is determined by a two dimensional ordinary nonautonomous coupled inclusion when the exponents converge to constants provided the absorption coefficients are independent of the spatial variable. The pullback attractor and forward attracting set of this limiting system is investigated. 
695 |a Differenciálegyenlet 
700 0 1 |a Simsen Jacson  |e aut 
856 4 0 |u http://acta.bibl.u-szeged.hu/73662/1/ejqtde_2021_010.pdf  |z Dokumentum-elérés