Compactness of Riemann-Liouville fractional integral operators

We obtain results on compactness of two linear Hammerstein integral operators with singularities, and apply the results to give new proof that Riemann–Liouville fractional integral operators of order α ∈ (0, 1) map L p (0, 1) to C[0, 1] and are compact for each p ∈ 1 1−α . We show that the spectral...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerző: Lan Kunquan
Dokumentumtípus: Folyóirat
Megjelent: 2020
Sorozat:Electronic journal of qualitative theory of differential equations
Kulcsszavak:Differenciálegyenlet
doi:10.14232/ejqtde.2020.1.84

Online Access:http://acta.bibl.u-szeged.hu/73645
LEADER 01080nas a2200205 i 4500
001 acta73645
005 20211105150939.0
008 211105s2020 hu o 0|| eng d
022 |a 1417-3875 
024 7 |a 10.14232/ejqtde.2020.1.84  |2 doi 
040 |a SZTE Egyetemi Kiadványok Repozitórium  |b hun 
041 |a eng 
100 1 |a Lan Kunquan 
245 1 0 |a Compactness of Riemann-Liouville fractional integral operators  |h [elektronikus dokumentum] /  |c  Lan Kunquan 
260 |c 2020 
300 |a 15 
490 0 |a Electronic journal of qualitative theory of differential equations 
520 3 |a We obtain results on compactness of two linear Hammerstein integral operators with singularities, and apply the results to give new proof that Riemann–Liouville fractional integral operators of order α ∈ (0, 1) map L p (0, 1) to C[0, 1] and are compact for each p ∈ 1 1−α . We show that the spectral radii of the Riemann–Liouville fractional operators are zero. 
695 |a Differenciálegyenlet 
856 4 0 |u http://acta.bibl.u-szeged.hu/73645/1/ejqtde_2020_084.pdf  |z Dokumentum-elérés