Compactness of Riemann-Liouville fractional integral operators
We obtain results on compactness of two linear Hammerstein integral operators with singularities, and apply the results to give new proof that Riemann–Liouville fractional integral operators of order α ∈ (0, 1) map L p (0, 1) to C[0, 1] and are compact for each p ∈ 1 1−α . We show that the spectral...
Elmentve itt :
Szerző: | |
---|---|
Dokumentumtípus: | Folyóirat |
Megjelent: |
2020
|
Sorozat: | Electronic journal of qualitative theory of differential equations
|
Kulcsszavak: | Differenciálegyenlet |
doi: | 10.14232/ejqtde.2020.1.84 |
Online Access: | http://acta.bibl.u-szeged.hu/73645 |
LEADER | 01080nas a2200205 i 4500 | ||
---|---|---|---|
001 | acta73645 | ||
005 | 20211105150939.0 | ||
008 | 211105s2020 hu o 0|| eng d | ||
022 | |a 1417-3875 | ||
024 | 7 | |a 10.14232/ejqtde.2020.1.84 |2 doi | |
040 | |a SZTE Egyetemi Kiadványok Repozitórium |b hun | ||
041 | |a eng | ||
100 | 1 | |a Lan Kunquan | |
245 | 1 | 0 | |a Compactness of Riemann-Liouville fractional integral operators |h [elektronikus dokumentum] / |c Lan Kunquan |
260 | |c 2020 | ||
300 | |a 15 | ||
490 | 0 | |a Electronic journal of qualitative theory of differential equations | |
520 | 3 | |a We obtain results on compactness of two linear Hammerstein integral operators with singularities, and apply the results to give new proof that Riemann–Liouville fractional integral operators of order α ∈ (0, 1) map L p (0, 1) to C[0, 1] and are compact for each p ∈ 1 1−α . We show that the spectral radii of the Riemann–Liouville fractional operators are zero. | |
695 | |a Differenciálegyenlet | ||
856 | 4 | 0 | |u http://acta.bibl.u-szeged.hu/73645/1/ejqtde_2020_084.pdf |z Dokumentum-elérés |