Existence results for a clamped beam equation with integral boundary conditions
In this paper we investigate the existence of positive solutions of fourthorder non autonomous differential equations with integral boundary conditions, the nonlinearity is a continuous function that depends on the spatial variable and its the second-order derivative. The approach relies an extensio...
Elmentve itt :
Szerzők: | |
---|---|
Dokumentumtípus: | Folyóirat |
Megjelent: |
2020
|
Sorozat: | Electronic journal of qualitative theory of differential equations
|
Kulcsszavak: | Differenciálegyenlet |
doi: | 10.14232/ejqtde.2020.1.70 |
Online Access: | http://acta.bibl.u-szeged.hu/73631 |
LEADER | 01169nas a2200217 i 4500 | ||
---|---|---|---|
001 | acta73631 | ||
005 | 20211105131036.0 | ||
008 | 211105s2020 hu o 0|| eng d | ||
022 | |a 1417-3875 | ||
024 | 7 | |a 10.14232/ejqtde.2020.1.70 |2 doi | |
040 | |a SZTE Egyetemi Kiadványok Repozitórium |b hun | ||
041 | |a eng | ||
100 | 1 | |a Cabada Alberto | |
245 | 1 | 0 | |a Existence results for a clamped beam equation with integral boundary conditions |h [elektronikus dokumentum] / |c Cabada Alberto |
260 | |c 2020 | ||
300 | |a 17 | ||
490 | 0 | |a Electronic journal of qualitative theory of differential equations | |
520 | 3 | |a In this paper we investigate the existence of positive solutions of fourthorder non autonomous differential equations with integral boundary conditions, the nonlinearity is a continuous function that depends on the spatial variable and its the second-order derivative. The approach relies an extension of Krasnoselskii’s fixed point theorem in a cone. Some examples are given to illustrate our results. | |
695 | |a Differenciálegyenlet | ||
700 | 0 | 1 | |a Jebari Rochdi |e aut |
856 | 4 | 0 | |u http://acta.bibl.u-szeged.hu/73631/1/ejqtde_2020_070.pdf |z Dokumentum-elérés |