Uniqueness and nonuniqueness of fronts for degenerate diffusion-convection reaction equations

We consider a scalar parabolic equation in one spatial dimension. The equation is constituted by a convective term, a reaction term with one or two equilibria, and a positive diffusivity which can however vanish. We prove the existence and several properties of traveling-wave solutions to such an eq...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Berti Diego
Corli Andrea
Malaguti Luisa
Dokumentumtípus: Folyóirat
Megjelent: 2020
Sorozat:Electronic journal of qualitative theory of differential equations
Kulcsszavak:Differenciálegyenlet
doi:10.14232/ejqtde.2020.1.66

Online Access:http://acta.bibl.u-szeged.hu/73627
Leíró adatok
Tartalmi kivonat:We consider a scalar parabolic equation in one spatial dimension. The equation is constituted by a convective term, a reaction term with one or two equilibria, and a positive diffusivity which can however vanish. We prove the existence and several properties of traveling-wave solutions to such an equation. In particular, we provide a sharp estimate for the minimal speed of the profiles and improve previous results about the regularity of wavefronts. Moreover, we show the existence of an infinite number of semi-wavefronts with the same speed.
Terjedelem/Fizikai jellemzők:34
ISSN:1417-3875