On the solvability of the periodically forced relativistic pendulum equation on time scales

We study some properties of the range of the relativistic pendulum operator P, that is, the set of possible continuous T-periodic forcing terms p for which the equation Px = p admits a T-periodic solution over a T-periodic time scale T. Writing p(t) = p0(t) + p, we prove the existence of a nonempty...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Amster Pablo
Kuna Mariel Paula
Santos Dionicio P.
Dokumentumtípus: Folyóirat
Megjelent: 2020
Sorozat:Electronic journal of qualitative theory of differential equations
Kulcsszavak:Differenciálegyenlet
doi:10.14232/ejqtde.2020.1.62

Online Access:http://acta.bibl.u-szeged.hu/73623
LEADER 01580nas a2200229 i 4500
001 acta73623
005 20211105115755.0
008 211105s2020 hu o 0|| eng d
022 |a 1417-3875 
024 7 |a 10.14232/ejqtde.2020.1.62  |2 doi 
040 |a SZTE Egyetemi Kiadványok Repozitórium  |b hun 
041 |a eng 
100 1 |a Amster Pablo 
245 1 3 |a On the solvability of the periodically forced relativistic pendulum equation on time scales  |h [elektronikus dokumentum] /  |c  Amster Pablo 
260 |c 2020 
300 |a 11 
490 0 |a Electronic journal of qualitative theory of differential equations 
520 3 |a We study some properties of the range of the relativistic pendulum operator P, that is, the set of possible continuous T-periodic forcing terms p for which the equation Px = p admits a T-periodic solution over a T-periodic time scale T. Writing p(t) = p0(t) + p, we prove the existence of a nonempty compact interval I(p0), depending continuously on p0, such that the problem has a solution if and only if p ∈ I(p0) and at least two different solutions when p is an interior point. Furthermore, we give sufficient conditions for nondegeneracy; specifically, we prove that if T is small then I(p0) is a neighbourhood of 0 for arbitrary p0. The results in the present paper improve the smallness condition obtained in previous works for the continuous case T = R. 
695 |a Differenciálegyenlet 
700 0 1 |a Kuna Mariel Paula  |e aut 
700 0 1 |a Santos Dionicio P.  |e aut 
856 4 0 |u http://acta.bibl.u-szeged.hu/73623/1/ejqtde_2020_062.pdf  |z Dokumentum-elérés