Reduction of order in the oscillation theory of half-linear differential equations

Oscillation of solutions of even order half-linear differential equations of the form D(αn, . . . , α1)x + q(t)|x| sgn x = 0, t ≥ a > 0, (1.1) where αi , 1 ≤ i ≤ n, and β are positive constants, q is a continuous function from [a, ∞) to (0, ∞) and the differential operator D(αn, . . . , α1) is de...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerző: Jaroš Jaroslav
Dokumentumtípus: Folyóirat
Megjelent: 2020
Sorozat:Electronic journal of qualitative theory of differential equations
Kulcsszavak:Differenciálegyenlet
Online Access:http://acta.bibl.u-szeged.hu/69541
Leíró adatok
Tartalmi kivonat:Oscillation of solutions of even order half-linear differential equations of the form D(αn, . . . , α1)x + q(t)|x| sgn x = 0, t ≥ a > 0, (1.1) where αi , 1 ≤ i ≤ n, and β are positive constants, q is a continuous function from [a, ∞) to (0, ∞) and the differential operator D(αn, . . . , α1) is defined by D(α1)x = d dt |x| α1 sgn x and D(αi , . . . , α1)x = d dt |D(αi−1 , . . . , α1)x| αi sgn D(αi−1 , . . . , α1)x , i = 2, . . . , n, is proved in the case where α1 · · · αn = β through reduction to the problem of oscillation of solutions of some lower order differential equations associated with (1.1)
ISSN:1417-3875