A positive solution of asymptotically periodic Schrödinger equations with local superlinear nonlinearities
In this paper, we investigate the following Schrödinger equation −∆u + V(x)u = λ f(u) in R N, where N ≥ 3, λ > 0, V is an asymptotically periodic potential and the nonlinearity term f(u) is only locally defined for |u| small and satisfies some mild conditions. By using Nehari manifold and Moser i...
Elmentve itt :
Szerzők: |
Li Gui-Dong Li Yong-Yong Tang Chun-Lei |
---|---|
Dokumentumtípus: | Folyóirat |
Megjelent: |
2020
|
Sorozat: | Electronic journal of qualitative theory of differential equations
|
Kulcsszavak: | Differenciálegyenlet |
doi: | 10.14232/ejqtde.2020.1.30 |
Online Access: | http://acta.bibl.u-szeged.hu/69534 |
Hasonló tételek
-
Ground state sign-changing solutions for critical Choquard equations with steep well potential
Szerző: Li Yong-Yong, et al.
Megjelent: (2022) -
Positive periodic solutions in neutral nonlinear differential equations
Szerző: Raffoul Youssef N.
Megjelent: (2007) -
Asymptotic behavior of multiple solutions for quasilinear Schrödinger equations
Szerző: Zhang Xian, et al.
Megjelent: (2022) -
Ground state solutions for asymptotically periodic fractional Choquard equations
Szerző: Chen Sitong, et al.
Megjelent: (2019) -
Positive almost periodic type solutions to a class of nonlinear difference equation
Szerző: Ding Hui-Sheng, et al.
Megjelent: (2011)