On the existence and multiplicity of eigenvalues for a class of double-phase non-autonomous problems with variable exponent growth

We study the following class of double-phase nonlinear eigenvalue problems − div [φ(x, |∇u|)∇u + ψ(x, |∇u|)∇u] = λ f(x, u) in Ω, u = 0 on ∂Ω, where Ω is a bounded domain from RN with smooth boundary and the potential functions φ and ψ have (p1(x); p2(x)) variable growth. The main results of this pap...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerző: Uţă Vasile-Florin
Dokumentumtípus: Folyóirat
Megjelent: 2020
Sorozat:Electronic journal of qualitative theory of differential equations
Kulcsszavak:Differenciálegyenlet
doi:10.14232/ejqtde.2020.1.28

Online Access:http://acta.bibl.u-szeged.hu/69532
LEADER 01547nas a2200193 i 4500
001 acta69532
005 20211020135208.0
008 200608s2020 hu o 0|| zxx d
022 |a 1417-3875 
024 7 |a 10.14232/ejqtde.2020.1.28  |2 doi 
040 |a SZTE Egyetemi Kiadványok Repozitórium  |b hun 
041 |a zxx 
100 1 |a Uţă Vasile-Florin 
245 1 3 |a On the existence and multiplicity of eigenvalues for a class of double-phase non-autonomous problems with variable exponent growth  |h [elektronikus dokumentum] /  |c  Uţă Vasile-Florin 
260 |c 2020 
490 0 |a Electronic journal of qualitative theory of differential equations 
520 3 |a We study the following class of double-phase nonlinear eigenvalue problems − div [φ(x, |∇u|)∇u + ψ(x, |∇u|)∇u] = λ f(x, u) in Ω, u = 0 on ∂Ω, where Ω is a bounded domain from RN with smooth boundary and the potential functions φ and ψ have (p1(x); p2(x)) variable growth. The main results of this paper are to prove the existence of a continuous spectrum consisting in a bounded interval in the near proximity of the origin, the fact that the multiplicity of every eigenvalue located in this interval is at least two and to establish the existence of infinitely many solutions for our problem. The proofs rely on variational arguments based on the Ekeland’s variational principle, the mountain pass theorem, the fountain theorem and energy estimates. 
695 |a Differenciálegyenlet 
856 4 0 |u http://acta.bibl.u-szeged.hu/69532/1/ejqtde_2020_028.pdf  |z Dokumentum-elérés