Crossing limit cycles for piecewise linear differential centers separated by a reducible cubic curve

As for the general planar differential systems one of the main problems for the piecewise linear differential systems is to determine the existence and the maximum number of crossing limits cycles that these systems can exhibit. But in general to provide a sharp upper bound on the number of crossing...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Jimenez Jeidy J.
Llibre Jaume
Medrado João C.
Dokumentumtípus: Folyóirat
Megjelent: 2020
Sorozat:Electronic journal of qualitative theory of differential equations
Kulcsszavak:Differenciálegyenlet
doi:10.14232/ejqtde.2020.1.19

Online Access:http://acta.bibl.u-szeged.hu/69523
LEADER 01441nas a2200217 i 4500
001 acta69523
005 20211020135206.0
008 200608s2020 hu o 0|| zxx d
022 |a 1417-3875 
024 7 |a 10.14232/ejqtde.2020.1.19  |2 doi 
040 |a SZTE Egyetemi Kiadványok Repozitórium  |b hun 
041 |a zxx 
100 1 |a Jimenez Jeidy J. 
245 1 0 |a Crossing limit cycles for piecewise linear differential centers separated by a reducible cubic curve  |h [elektronikus dokumentum] /  |c  Jimenez Jeidy J. 
260 |c 2020 
490 0 |a Electronic journal of qualitative theory of differential equations 
520 3 |a As for the general planar differential systems one of the main problems for the piecewise linear differential systems is to determine the existence and the maximum number of crossing limits cycles that these systems can exhibit. But in general to provide a sharp upper bound on the number of crossing limit cycles is a very difficult problem. In this work we study the existence of crossing limit cycles and their distribution for piecewise linear differential systems formed by linear differential centers and separated by a reducible cubic curve, formed either by a circle and a straight line, or by a parabola and a straight line. 
695 |a Differenciálegyenlet 
700 0 1 |a Llibre Jaume  |e aut 
700 0 1 |a Medrado João C.  |e aut 
856 4 0 |u http://acta.bibl.u-szeged.hu/69523/1/ejqtde_2020_019.pdf  |z Dokumentum-elérés