Sound over-approximation of probabilities

Safety analysis of high confidence systems requires guaranteed bounds on the probabilities of events of interest. Establishing the correctness of algorithms that aim to compute such bounds is challenging. We address this problem in three steps. First, we use monadic transition systems (MTS) in the c...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Moggi Eugenio
Taha Walid
Thunberg Johan
Testületi szerző: Summer Workshop on Interval Methods (11.) (2018) (Rostock)
Dokumentumtípus: Cikk
Megjelent: University of Szeged, Institute of Informatics Szeged 2020
Sorozat:Acta cybernetica 24 No. 3
Kulcsszavak:Számítástechnika, Kibernetika
Tárgyszavak:
doi:10.14232/actacyb.24.3.2020.2

Online Access:http://acta.bibl.u-szeged.hu/69287
LEADER 02238nab a2200265 i 4500
001 acta69287
005 20220621094435.0
008 200730s2020 hu o 0|| eng d
022 |a 0324-721X 
024 7 |a 10.14232/actacyb.24.3.2020.2  |2 doi 
040 |a SZTE Egyetemi Kiadványok Repozitórium  |b hun 
041 |a eng 
100 1 |a Moggi Eugenio 
245 1 0 |a Sound over-approximation of probabilities  |h [elektronikus dokumentum] /  |c  Moggi Eugenio 
260 |a University of Szeged, Institute of Informatics  |b Szeged  |c 2020 
300 |a 269-285 
490 0 |a Acta cybernetica  |v 24 No. 3 
520 3 |a Safety analysis of high confidence systems requires guaranteed bounds on the probabilities of events of interest. Establishing the correctness of algorithms that aim to compute such bounds is challenging. We address this problem in three steps. First, we use monadic transition systems (MTS) in the category of sets as a framework for modeling discrete time systems. MTS can capture different types of system behaviors, but we focus on a combination of non-deterministic and probabilistic behaviors that often arises when modeling complex systems. Second, we use the category of posets and monotonic maps as a setting to define and compare approximations. In particular, for the MTS of interest, we consider approximations of their configurations based on complete lattices. Third, by restricting to finite lattices, we obtain algorithms that compute over-approximations, i.e., bounds from above within some partial order of approximants, of the system configuration after n steps. Interestingly, finite lattices of “interval probabilities” may fail to accurately approximate configurations that are both non-deterministic and probabilistic, even for deterministic (and continuous) system dynamics. However, better choices of finite lattices are available. 
650 4 |a Természettudományok 
650 4 |a Számítás- és információtudomány 
695 |a Számítástechnika, Kibernetika 
700 0 1 |a Taha Walid  |e aut 
700 0 1 |a Thunberg Johan  |e aut 
710 |a Summer Workshop on Interval Methods (11.) (2018) (Rostock) 
856 4 0 |u http://acta.bibl.u-szeged.hu/69287/1/cybernetica_024_numb_003_269-285.pdf  |z Dokumentum-elérés