On interval observer design for continuous-time LPV switched systems

State estimation for switched systems with time-varying parameters has received a great attention during the past decades. In this paper, a new approach to design an interval observer for this class of systems is proposed. The scheduling vector is described by a convex combination so that the varyin...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Zammali Chaima
Van Gorp Jeremy
Raïssi Tarek
Testületi szerző: Summer Workshop on Interval Methods (11.) (2018) (Rostock)
Dokumentumtípus: Cikk
Megjelent: University of Szeged, Institute of Informatics Szeged 2020
Sorozat:Acta cybernetica 24 No. 3
Kulcsszavak:Számítástechnika, Kibernetika, Vezérléstechnika, Robotika
Tárgyszavak:
doi:10.14232/actacyb.24.3.2020.14

Online Access:http://acta.bibl.u-szeged.hu/69274
LEADER 01848nab a2200265 i 4500
001 acta69274
005 20220621095605.0
008 200730s2020 hu o 0|| eng d
022 |a 0324-721X 
024 7 |a 10.14232/actacyb.24.3.2020.14  |2 doi 
040 |a SZTE Egyetemi Kiadványok Repozitórium  |b hun 
041 |a eng 
100 1 |a Zammali Chaima 
245 1 3 |a On interval observer design for continuous-time LPV switched systems  |h [elektronikus dokumentum] /  |c  Zammali Chaima 
260 |a University of Szeged, Institute of Informatics  |b Szeged  |c 2020 
300 |a 539-555 
490 0 |a Acta cybernetica  |v 24 No. 3 
520 3 |a State estimation for switched systems with time-varying parameters has received a great attention during the past decades. In this paper, a new approach to design an interval observer for this class of systems is proposed. The scheduling vector is described by a convex combination so that the varying parameters belong into polytopes. The considered system is also subject to measurement noise and state disturbances which are supposed to be unknown but bounded. The proposed method guarantees both cooperativity and Input to State Stability (ISS) of the upper and lower observation errors. Sufficient conditions are given in terms of Linear Matrix Inequalities (LMIs) using a common quadratic Lyapunov function. Finally, a numerical example is provided to show the effectiveness of the designed observer. 
650 4 |a Természettudományok 
650 4 |a Számítás- és információtudomány 
695 |a Számítástechnika, Kibernetika, Vezérléstechnika, Robotika 
700 0 2 |a Van Gorp Jeremy  |e aut 
700 0 2 |a Raïssi Tarek  |e aut 
710 |a Summer Workshop on Interval Methods (11.) (2018) (Rostock) 
856 4 0 |u http://acta.bibl.u-szeged.hu/69274/1/cybernetica_024_numb_003_539-555.pdf  |z Dokumentum-elérés