A global bifurcation theorem for a multiparameter positone problem and its application to the one-dimensional perturbed Gelfand problem
We study the global bifurcation and exact multiplicity of positive solutions for u 00(x) + λ fε(u) = 0, − 1 < x < 1, u(−1) = u(1) = 0, where λ > 0 is a bifurcation parameter, ε ∈ Θ is an evolution parameter, and Θ ≡ (σ1, σ2) is an open interval with 0 ≤ σ1 < σ2 ≤ ∞. Under some suitable h...
Elmentve itt :
Szerzők: |
Huang Shao-Yuan Hung Kuo-Chih Wang Shin-Hwa |
---|---|
Dokumentumtípus: | Folyóirat |
Megjelent: |
2019
|
Sorozat: | Electronic journal of qualitative theory of differential equations
|
Kulcsszavak: | Gelfand probléma, Bifurkáció |
doi: | 10.14232/ejqtde.2019.1.99 |
Online Access: | http://acta.bibl.u-szeged.hu/66366 |
Hasonló tételek
-
A variational property on the evolutionary bifurcation curves for the one-dimensional perturbed Gelfand problem from combustion theory
Szerző: Huang Shao-Yuan, et al.
Megjelent: (2016) -
Classification and evolution of bifurcation curves for a one-dimensional Neumann-Robin problem and its applications
Szerző: Tsai Chi-Chao, et al.
Megjelent: (2018) -
Bifurcation curves of positive solutions for the Minkowski-curvature problem with cubic nonlinearity
Szerző: Huang Shao-Yuan, et al.
Megjelent: (2021) -
One-dimensional perturbations of singular unitary operators
Szerző: Makarov Nikolai G.
Megjelent: (1988) -
Multiple solutions for a perturbed mixed boundary value problem involving the one-dimensional p-Laplacian
Szerző: D'Aguì Giuseppina, et al.
Megjelent: (2013)