Oscillatory behavior of the second order noncanonical differential equations
Establishing monotonical properties of nonoscillatory solutions we introduce new oscillatory criteria for the second order noncanonical differential equation with delay/advanced argument (r(t)y 0 (t))0 + p(t)y(τ(t)) = 0. Our oscillatory results essentially extend the earlier ones. The progress is il...
Elmentve itt :
Szerző: | |
---|---|
Dokumentumtípus: | Folyóirat |
Megjelent: |
2019
|
Sorozat: | Electronic journal of qualitative theory of differential equations
|
Kulcsszavak: | Másodrendű differenciálegyenlet, Oszcilláció - differenciálegyenlet |
doi: | 10.14232/ejqtde.2019.1.89 |
Online Access: | http://acta.bibl.u-szeged.hu/66356 |
LEADER | 01134nas a2200205 i 4500 | ||
---|---|---|---|
001 | acta66356 | ||
005 | 20210916104206.0 | ||
008 | 200127s2019 hu o 0|| zxx d | ||
022 | |a 1417-3875 | ||
024 | 7 | |a 10.14232/ejqtde.2019.1.89 |2 doi | |
040 | |a SZTE Egyetemi Kiadványok Repozitórium |b hun | ||
041 | |a zxx | ||
100 | 1 | |a Baculíková Blanka | |
245 | 1 | 0 | |a Oscillatory behavior of the second order noncanonical differential equations |h [elektronikus dokumentum] / |c Baculíková Blanka |
260 | |c 2019 | ||
300 | |a 1-11 | ||
490 | 0 | |a Electronic journal of qualitative theory of differential equations | |
520 | 3 | |a Establishing monotonical properties of nonoscillatory solutions we introduce new oscillatory criteria for the second order noncanonical differential equation with delay/advanced argument (r(t)y 0 (t))0 + p(t)y(τ(t)) = 0. Our oscillatory results essentially extend the earlier ones. The progress is illustrated via Euler differential equation. | |
695 | |a Másodrendű differenciálegyenlet, Oszcilláció - differenciálegyenlet | ||
856 | 4 | 0 | |u http://acta.bibl.u-szeged.hu/66356/1/ejqtde_2019_089.pdf |z Dokumentum-elérés |