On principal congruences and the number of congruences of a lattice with more ideals than filters

Let λ and κ be cardinal numbers such that κ is infinite and either2 ≤ λ ≤ κ, or λ = 2κ. We prove that there exists a lattice L exactly λ many congruences ,2κ many ideals, but only κ many filters. Furthermore, if λ ≤ 2isan integer of the form 2m·3n, then we can choose L to be a modular lattice gener...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Czédli Gábor
Mureşan Claudia
Dokumentumtípus: Cikk
Megjelent: 2019
Sorozat:Acta scientiarum mathematicarum 85 No. 3-4
Kulcsszavak:Rácselmélet - rács szűrő - egyezések
doi:10.14232/actasm-018-538-y

Online Access:http://acta.bibl.u-szeged.hu/66321
LEADER 01779nab a2200217 i 4500
001 acta66321
005 20210325153448.0
008 200423s2019 hu o 0|| zxx d
022 |a 2064-8316 
024 7 |a 10.14232/actasm-018-538-y  |2 doi 
040 |a SZTE Egyetemi Kiadványok Repozitórium  |b hun 
041 |a zxx 
100 1 |a Czédli Gábor 
245 1 3 |a On principal congruences and the number of congruences of a lattice with more ideals than filters  |h [elektronikus dokumentum] /  |c  Czédli Gábor 
260 |c 2019 
300 |a 363-380 
490 0 |a Acta scientiarum mathematicarum  |v 85 No. 3-4 
520 3 |a Let λ and κ be cardinal numbers such that κ is infinite and either2 ≤ λ ≤ κ, or λ = 2κ. We prove that there exists a lattice L exactly λ many congruences ,2κ many ideals, but only κ many filters. Furthermore, if λ ≤ 2isan integer of the form 2m·3n, then we can choose L to be a modular lattice generating one of the minimal modular nondistributive congruence varieties described by Ralph Freese in 1976, and this L is even relatively complemented for λ= 2. Related to some earlier results of George Grätzer and the first author,we also prove that ifPis a bounded ordered set (in other words, a boundedposet) with at least two elements,G is a group, and κ is an infinite cardinal such that κ≥ |P|and κ≥ |G|, then there exists a lattice L of cardinality κ that (i) the principal congruences of L form an ordered set isomorphic to P, (ii) the automorphism group of L is isomorphic to G, (iii)L has 2κ many ideals, but (iv)L has only κ many filters. 
695 |a Rácselmélet - rács szűrő - egyezések 
700 0 1 |a Mureşan Claudia  |e aut 
856 4 0 |u http://acta.bibl.u-szeged.hu/66321/1/math_085_numb_003-004_363-380.pdf  |z Dokumentum-elérés