Alternative iterative technique

The standard methods of applying iterative techniques do not apply when the nonlinear term is neither monotonic (corresponding to an increasing or decreasing operator) nor Lipschitz (corresponding to a condensing operator). However, by applying the Layered Compression–Expansion Theorem in conjunctio...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Avery Richard I.
Anderson Douglas R.
Henderson Johnny
Dokumentumtípus: Folyóirat
Megjelent: 2019
Sorozat:Electronic journal of qualitative theory of differential equations
Kulcsszavak:Operátor, Határérték probléma
doi:10.14232/ejqtde.2019.1.51

Online Access:http://acta.bibl.u-szeged.hu/62275
LEADER 01222nas a2200229 i 4500
001 acta62275
005 20210916104204.0
008 190930s2019 hu o 0|| zxx d
022 |a 1417-3875 
024 7 |a 10.14232/ejqtde.2019.1.51  |2 doi 
040 |a SZTE Egyetemi Kiadványok Repozitórium  |b hun 
041 |a zxx 
100 1 |a Avery Richard I. 
245 1 0 |a Alternative iterative technique  |h [elektronikus dokumentum] /  |c  Avery Richard I. 
260 |c 2019 
300 |a 1-7 
490 0 |a Electronic journal of qualitative theory of differential equations 
520 3 |a The standard methods of applying iterative techniques do not apply when the nonlinear term is neither monotonic (corresponding to an increasing or decreasing operator) nor Lipschitz (corresponding to a condensing operator). However, by applying the Layered Compression–Expansion Theorem in conjunction with an alternative inversion technique, we show how one can apply monotonicity techniques to a right focal boundary value problem. 
695 |a Operátor, Határérték probléma 
700 0 1 |a Anderson Douglas R.  |e aut 
700 0 1 |a Henderson Johnny  |e aut 
856 4 0 |u http://acta.bibl.u-szeged.hu/62275/1/ejqtde_2019_051_001-007.pdf  |z Dokumentum-elérés