Alternative iterative technique
The standard methods of applying iterative techniques do not apply when the nonlinear term is neither monotonic (corresponding to an increasing or decreasing operator) nor Lipschitz (corresponding to a condensing operator). However, by applying the Layered Compression–Expansion Theorem in conjunctio...
Elmentve itt :
Szerzők: | |
---|---|
Dokumentumtípus: | Folyóirat |
Megjelent: |
2019
|
Sorozat: | Electronic journal of qualitative theory of differential equations
|
Kulcsszavak: | Operátor, Határérték probléma |
doi: | 10.14232/ejqtde.2019.1.51 |
Online Access: | http://acta.bibl.u-szeged.hu/62275 |
LEADER | 01222nas a2200229 i 4500 | ||
---|---|---|---|
001 | acta62275 | ||
005 | 20210916104204.0 | ||
008 | 190930s2019 hu o 0|| zxx d | ||
022 | |a 1417-3875 | ||
024 | 7 | |a 10.14232/ejqtde.2019.1.51 |2 doi | |
040 | |a SZTE Egyetemi Kiadványok Repozitórium |b hun | ||
041 | |a zxx | ||
100 | 1 | |a Avery Richard I. | |
245 | 1 | 0 | |a Alternative iterative technique |h [elektronikus dokumentum] / |c Avery Richard I. |
260 | |c 2019 | ||
300 | |a 1-7 | ||
490 | 0 | |a Electronic journal of qualitative theory of differential equations | |
520 | 3 | |a The standard methods of applying iterative techniques do not apply when the nonlinear term is neither monotonic (corresponding to an increasing or decreasing operator) nor Lipschitz (corresponding to a condensing operator). However, by applying the Layered Compression–Expansion Theorem in conjunction with an alternative inversion technique, we show how one can apply monotonicity techniques to a right focal boundary value problem. | |
695 | |a Operátor, Határérték probléma | ||
700 | 0 | 1 | |a Anderson Douglas R. |e aut |
700 | 0 | 1 | |a Henderson Johnny |e aut |
856 | 4 | 0 | |u http://acta.bibl.u-szeged.hu/62275/1/ejqtde_2019_051_001-007.pdf |z Dokumentum-elérés |