The bifurcation of limit cycles of two classes of cubic isochronous systems
In this paper, we study the bifurcation of limit cycles of the periodic annulus of two classes of cubic isochronous systems. By using complete elliptic integrals of the first, second kinds and the Chebyshev criterion, we show that the upper bound for the number of limit cycles which appear from the...
Elmentve itt :
Szerzők: |
Shao Yi Lai Yongzeng A Chunxiang |
---|---|
Dokumentumtípus: | Folyóirat |
Megjelent: |
2019
|
Sorozat: | Electronic journal of qualitative theory of differential equations
|
Kulcsszavak: | Bifurkáció, Perturbáció |
doi: | 10.14232/ejqtde.2019.1.50 |
Online Access: | http://acta.bibl.u-szeged.hu/62274 |
Hasonló tételek
-
Bifurcation for a class of piecewise cubic systems with two centers
Szerző: Ji Guilin, et al.
Megjelent: (2022) -
On the limit cycles for a class of discontinuous piecewise cubic polynomial differential systems
Szerző: Huang Bo
Megjelent: (2020) -
Limit cycles for a class of polynomial differential systems
Szerző: Qiao Jianyuan, et al.
Megjelent: (2016) -
Limit cycles of planar discontinuous piecewise linear Hamiltonian systems without equilibria separated by reducible cubics
Szerző: Benterki Rebiha, et al.
Megjelent: (2021) -
Bifurcation curves of positive solutions for the Minkowski-curvature problem with cubic nonlinearity
Szerző: Huang Shao-Yuan, et al.
Megjelent: (2021)