Ground state sign-changing solutions for Kirchhoff equations with logarithmic nonlinearity

In this paper, we study Kirchhoff equations with logarithmic nonlinearity: −(a + b R |∇u| 2 )∆u + V(x)u = |u| p−2u ln u 2 , in Ω, u = 0, on ∂Ω, where a, b > 0 are constants, 4 < p < 2 , Ω is a smooth bounded domain of R3 and V : Ω → R. Using constraint variational method, topological degree...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Wen Lixi
Xianhua Tang
Chen Sitong
Dokumentumtípus: Folyóirat
Megjelent: 2019
Sorozat:Electronic journal of qualitative theory of differential equations
Kulcsszavak:Kirchhoff, Differenciálegyenlet, Logaritmus
doi:10.14232/ejqtde.2019.1.47

Online Access:http://acta.bibl.u-szeged.hu/62271
LEADER 01515nas a2200229 i 4500
001 acta62271
005 20210916104236.0
008 190930s2019 hu o 0|| zxx d
022 |a 1417-3875 
024 7 |a 10.14232/ejqtde.2019.1.47  |2 doi 
040 |a SZTE Egyetemi Kiadványok Repozitórium  |b hun 
041 |a zxx 
100 1 |a Wen Lixi 
245 1 0 |a Ground state sign-changing solutions for Kirchhoff equations with logarithmic nonlinearity  |h [elektronikus dokumentum] /  |c  Wen Lixi 
260 |c 2019 
300 |a 1-13 
490 0 |a Electronic journal of qualitative theory of differential equations 
520 3 |a In this paper, we study Kirchhoff equations with logarithmic nonlinearity: −(a + b R |∇u| 2 )∆u + V(x)u = |u| p−2u ln u 2 , in Ω, u = 0, on ∂Ω, where a, b > 0 are constants, 4 < p < 2 , Ω is a smooth bounded domain of R3 and V : Ω → R. Using constraint variational method, topological degree theory and some new energy estimate inequalities, we prove the existence of ground state solutions and ground state sign-changing solutions with precisely two nodal domains. In particular, some new tricks are used to overcome the difficulties that |u| p−2u ln u 2 is sign-changing and satisfies neither the monotonicity condition nor the Ambrosetti–Rabinowitz condition. 
695 |a Kirchhoff, Differenciálegyenlet, Logaritmus 
700 0 1 |a Xianhua Tang  |e aut 
700 0 1 |a Chen Sitong  |e aut 
856 4 0 |u http://acta.bibl.u-szeged.hu/62271/1/ejqtde_2019_047_001-017.pdf  |z Dokumentum-elérés