Ground state sign-changing solutions for Kirchhoff equations with logarithmic nonlinearity
In this paper, we study Kirchhoff equations with logarithmic nonlinearity: −(a + b R |∇u| 2 )∆u + V(x)u = |u| p−2u ln u 2 , in Ω, u = 0, on ∂Ω, where a, b > 0 are constants, 4 < p < 2 , Ω is a smooth bounded domain of R3 and V : Ω → R. Using constraint variational method, topological degree...
Elmentve itt :
Szerzők: | |
---|---|
Dokumentumtípus: | Folyóirat |
Megjelent: |
2019
|
Sorozat: | Electronic journal of qualitative theory of differential equations
|
Kulcsszavak: | Kirchhoff, Differenciálegyenlet, Logaritmus |
doi: | 10.14232/ejqtde.2019.1.47 |
Online Access: | http://acta.bibl.u-szeged.hu/62271 |
LEADER | 01515nas a2200229 i 4500 | ||
---|---|---|---|
001 | acta62271 | ||
005 | 20210916104236.0 | ||
008 | 190930s2019 hu o 0|| zxx d | ||
022 | |a 1417-3875 | ||
024 | 7 | |a 10.14232/ejqtde.2019.1.47 |2 doi | |
040 | |a SZTE Egyetemi Kiadványok Repozitórium |b hun | ||
041 | |a zxx | ||
100 | 1 | |a Wen Lixi | |
245 | 1 | 0 | |a Ground state sign-changing solutions for Kirchhoff equations with logarithmic nonlinearity |h [elektronikus dokumentum] / |c Wen Lixi |
260 | |c 2019 | ||
300 | |a 1-13 | ||
490 | 0 | |a Electronic journal of qualitative theory of differential equations | |
520 | 3 | |a In this paper, we study Kirchhoff equations with logarithmic nonlinearity: −(a + b R |∇u| 2 )∆u + V(x)u = |u| p−2u ln u 2 , in Ω, u = 0, on ∂Ω, where a, b > 0 are constants, 4 < p < 2 , Ω is a smooth bounded domain of R3 and V : Ω → R. Using constraint variational method, topological degree theory and some new energy estimate inequalities, we prove the existence of ground state solutions and ground state sign-changing solutions with precisely two nodal domains. In particular, some new tricks are used to overcome the difficulties that |u| p−2u ln u 2 is sign-changing and satisfies neither the monotonicity condition nor the Ambrosetti–Rabinowitz condition. | |
695 | |a Kirchhoff, Differenciálegyenlet, Logaritmus | ||
700 | 0 | 1 | |a Xianhua Tang |e aut |
700 | 0 | 1 | |a Chen Sitong |e aut |
856 | 4 | 0 | |u http://acta.bibl.u-szeged.hu/62271/1/ejqtde_2019_047_001-017.pdf |z Dokumentum-elérés |