Focal Baer semigroups and a restricted star order
The goal of the paper is to transfer some order properties of starordered Rickart *-rings to Baer semigroups. A focal Baer semigroup S is a semigroup with 0 expanded by two unary idempotent-valued operations, 8 and , such that the left (right) ideal generated by x 8 (resp., x ) is the left (resp., r...
Elmentve itt :
Szerző: | |
---|---|
Dokumentumtípus: | Cikk |
Megjelent: |
2019
|
Sorozat: | Acta scientiarum mathematicarum
85 No. 1-2 |
Kulcsszavak: | Matematika |
doi: | 10.14232/actasm-017-319-5 |
Online Access: | http://acta.bibl.u-szeged.hu/62135 |
LEADER | 01487nab a2200205 i 4500 | ||
---|---|---|---|
001 | acta62135 | ||
005 | 20210325153053.0 | ||
008 | 190925s2019 hu o 0|| zxx d | ||
022 | |a 2064-8316 | ||
024 | 7 | |a 10.14232/actasm-017-319-5 |2 doi | |
040 | |a SZTE Egyetemi Kiadványok Repozitórium |b hun | ||
041 | |a zxx | ||
100 | 1 | |a Cīrulis Jānis | |
245 | 1 | 0 | |a Focal Baer semigroups and a restricted star order |h [elektronikus dokumentum] / |c Cīrulis Jānis |
260 | |c 2019 | ||
300 | |a 97-117 | ||
490 | 0 | |a Acta scientiarum mathematicarum |v 85 No. 1-2 | |
520 | 3 | |a The goal of the paper is to transfer some order properties of starordered Rickart *-rings to Baer semigroups. A focal Baer semigroup S is a semigroup with 0 expanded by two unary idempotent-valued operations, 8 and , such that the left (right) ideal generated by x 8 (resp., x ) is the left (resp., right) annihilator of x. S is said to be symmetric if the ranges of the two operations coincide and p 8 = p for every p from the common range P. Such a semigroup is shown to be P-semiabundant. If it is also Lawson reduced, then P is an orthomodular lattice under the standard order of idempotents, and a restricted version of Drazin star partial order can be defined on S. The lattice structure of S under this order is shown to be similar, in several respects, to that of star-ordered Rickart *-rings. | |
695 | |a Matematika | ||
856 | 4 | 0 | |u http://acta.bibl.u-szeged.hu/62135/1/math_085_numb_001-002_097-117.pdf |z Dokumentum-elérés |