Existence and uniqueness of positive even homoclinic solutions for second order differential equations

This paper is concerned with the existence of positive even homoclinic solutions for the p-Laplacian equation (|u 0 p−2u 0 0 − a(t)|u| p−2u + f(t, u) = 0, t ∈ R, where p ≥ 2 and the functions a and f satisfy some reasonable conditions. Using the Mountain Pass Theorem, we obtain the existence of a po...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Daouas Adel
Boujlida Monia
Dokumentumtípus: Folyóirat
Megjelent: 2019
Sorozat:Electronic journal of qualitative theory of differential equations
Kulcsszavak:Másodrendű differenciálegyenlet
doi:10.14232/ejqtde.2019.1.45

Online Access:http://acta.bibl.u-szeged.hu/62123
LEADER 01339nas a2200217 i 4500
001 acta62123
005 20210916104212.0
008 190930s2019 hu o 0|| zxx d
022 |a 1417-3875 
024 7 |a 10.14232/ejqtde.2019.1.45  |2 doi 
040 |a SZTE Egyetemi Kiadványok Repozitórium  |b hun 
041 |a zxx 
100 1 |a Daouas Adel 
245 1 0 |a Existence and uniqueness of positive even homoclinic solutions for second order differential equations  |h [elektronikus dokumentum] /  |c  Daouas Adel 
260 |c 2019 
300 |a 1-12 
490 0 |a Electronic journal of qualitative theory of differential equations 
520 3 |a This paper is concerned with the existence of positive even homoclinic solutions for the p-Laplacian equation (|u 0 p−2u 0 0 − a(t)|u| p−2u + f(t, u) = 0, t ∈ R, where p ≥ 2 and the functions a and f satisfy some reasonable conditions. Using the Mountain Pass Theorem, we obtain the existence of a positive even homoclinic solution. In case p = 2, the solution obtained is unique under a condition of monotonicity on the function u 7−→ f(t,u) u . Some known results in the literature are generalized and significantly improved. 
695 |a Másodrendű differenciálegyenlet 
700 0 1 |a Boujlida Monia  |e aut 
856 4 0 |u http://acta.bibl.u-szeged.hu/62123/1/ejqtde_2019_045.pdf  |z Dokumentum-elérés