Existence and uniqueness of positive even homoclinic solutions for second order differential equations
This paper is concerned with the existence of positive even homoclinic solutions for the p-Laplacian equation (|u 0 p−2u 0 0 − a(t)|u| p−2u + f(t, u) = 0, t ∈ R, where p ≥ 2 and the functions a and f satisfy some reasonable conditions. Using the Mountain Pass Theorem, we obtain the existence of a po...
Elmentve itt :
Szerzők: | |
---|---|
Dokumentumtípus: | Folyóirat |
Megjelent: |
2019
|
Sorozat: | Electronic journal of qualitative theory of differential equations
|
Kulcsszavak: | Másodrendű differenciálegyenlet |
doi: | 10.14232/ejqtde.2019.1.45 |
Online Access: | http://acta.bibl.u-szeged.hu/62123 |
LEADER | 01339nas a2200217 i 4500 | ||
---|---|---|---|
001 | acta62123 | ||
005 | 20210916104212.0 | ||
008 | 190930s2019 hu o 0|| zxx d | ||
022 | |a 1417-3875 | ||
024 | 7 | |a 10.14232/ejqtde.2019.1.45 |2 doi | |
040 | |a SZTE Egyetemi Kiadványok Repozitórium |b hun | ||
041 | |a zxx | ||
100 | 1 | |a Daouas Adel | |
245 | 1 | 0 | |a Existence and uniqueness of positive even homoclinic solutions for second order differential equations |h [elektronikus dokumentum] / |c Daouas Adel |
260 | |c 2019 | ||
300 | |a 1-12 | ||
490 | 0 | |a Electronic journal of qualitative theory of differential equations | |
520 | 3 | |a This paper is concerned with the existence of positive even homoclinic solutions for the p-Laplacian equation (|u 0 p−2u 0 0 − a(t)|u| p−2u + f(t, u) = 0, t ∈ R, where p ≥ 2 and the functions a and f satisfy some reasonable conditions. Using the Mountain Pass Theorem, we obtain the existence of a positive even homoclinic solution. In case p = 2, the solution obtained is unique under a condition of monotonicity on the function u 7−→ f(t,u) u . Some known results in the literature are generalized and significantly improved. | |
695 | |a Másodrendű differenciálegyenlet | ||
700 | 0 | 1 | |a Boujlida Monia |e aut |
856 | 4 | 0 | |u http://acta.bibl.u-szeged.hu/62123/1/ejqtde_2019_045.pdf |z Dokumentum-elérés |