Existence and uniqueness of positive even homoclinic solutions for second order differential equations

This paper is concerned with the existence of positive even homoclinic solutions for the p-Laplacian equation (|u 0 p−2u 0 0 − a(t)|u| p−2u + f(t, u) = 0, t ∈ R, where p ≥ 2 and the functions a and f satisfy some reasonable conditions. Using the Mountain Pass Theorem, we obtain the existence of a po...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Daouas Adel
Boujlida Monia
Dokumentumtípus: Folyóirat
Megjelent: 2019
Sorozat:Electronic journal of qualitative theory of differential equations
Kulcsszavak:Másodrendű differenciálegyenlet
doi:10.14232/ejqtde.2019.1.45

Online Access:http://acta.bibl.u-szeged.hu/62123
Leíró adatok
Tartalmi kivonat:This paper is concerned with the existence of positive even homoclinic solutions for the p-Laplacian equation (|u 0 p−2u 0 0 − a(t)|u| p−2u + f(t, u) = 0, t ∈ R, where p ≥ 2 and the functions a and f satisfy some reasonable conditions. Using the Mountain Pass Theorem, we obtain the existence of a positive even homoclinic solution. In case p = 2, the solution obtained is unique under a condition of monotonicity on the function u 7−→ f(t,u) u . Some known results in the literature are generalized and significantly improved.
Terjedelem/Fizikai jellemzők:1-12
ISSN:1417-3875