Semi-supervised training of cell-classifier neural networks

Nowadays, microscopes used in biological research produce a huge amount of image data. Manually processing the images is a very time-consuming and resource-heavy task, so the development and implementation of new automatic systems is required. Moreover, as we have access to a large amount of unlabel...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Pap Gergely
Grósz Tamás
Tóth László
Testületi szerző: Conference of PhD students in computer science (11.) (2018) (Szeged)
Dokumentumtípus: Könyv része
Megjelent: 2018
Sorozat:Conference of PhD Students in Computer Science 11
Kulcsszavak:Számítástechnika, Biológiai kutatás
Online Access:http://acta.bibl.u-szeged.hu/61772
LEADER 01436naa a2200217 i 4500
001 acta61772
005 20221108101824.0
008 191104s2018 hu o 1|| zxx d
040 |a SZTE Egyetemi Kiadványok Repozitórium  |b hun 
041 |a zxx 
100 1 |a Pap Gergely 
245 1 0 |a Semi-supervised training of cell-classifier neural networks  |h [elektronikus dokumentum] /  |c  Pap Gergely 
260 |c 2018 
300 |a 84-87 
490 0 |a Conference of PhD Students in Computer Science  |v 11 
520 3 |a Nowadays, microscopes used in biological research produce a huge amount of image data. Manually processing the images is a very time-consuming and resource-heavy task, so the development and implementation of new automatic systems is required. Moreover, as we have access to a large amount of unlabeled data, while labels are only available for a small subset, these novel methods should be able to process large amounts of unlabeled data with minimal manual supervision. Here, we apply neural networks to classify cells present in biological images, and show that their accuracy can be improved by using semi-supervised training algorithms. 
695 |a Számítástechnika, Biológiai kutatás 
700 0 1 |a Grósz Tamás  |e aut 
700 0 1 |a Tóth László  |e aut 
710 |a Conference of PhD students in computer science (11.) (2018) (Szeged) 
856 4 0 |u http://acta.bibl.u-szeged.hu/61772/1/cscs_2018_097-100.pdf  |z Dokumentum-elérés